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Abstract

Testing causal effects has attracted much attention in the domains of many disciplines

since Granger’s pioneering work. The recent literature shows an increasing interest in test-

ing for Granger non-causality in a general sense by nonparametric evaluation of conditional

dependence. This paper introduces a novel nonparametric test based on the first order

Taylor expansion of an information theoretic measure: transfer entropy. The new test

statistic is shown to have an information-based interpretation for Granger non-causality.

The proposed test avoids the lack of power problem in the frequently-used test proposed

by Diks and Panchenko (2006), which is not a consistent test under some alternatives.

Attributed to the U-statistic representation, the asymptotic normality of our test statistic

is achieved when all densities are estimated with appropriate sample-size dependent band-

width. Simulation result confirms the usefulness of this test. Finally two applications to

financial data of daily and intraday frequency conclude this paper.
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1 Introduction

Characterizing causal interactions between time series was a challenging issue until Granger
(1969) brought forward the concept later known as Granger causality in his pioneering work.
Since then, testing causal effect has attracted massive attention not only in Economics and
Econometrics research, but also in the domains of neuroscience (Bressler and Seth (2011), Ding,
Chen, and Bressler (2006)), biology (Guo, Ladroue, and Feng (2010)) and physics(Barrett,
Barnett, and Seth (2010)) among others.
The vector autoregressive (VAR) modeling based test has become a popular methodology

for decades, with repeated debates on its validity. As we see it, there are at least two critical
problems with the parametric causality tests. First, basing on a classical linear VAR model,
traditional Granger causality tests may overlook a significant nonlinear relationship between
two processes. As Granger (1989) puts it, nonlinear models represent the proper way to model
the real world which is ‘almost certainly nonlinear’. Secondly, parametric causality testing ap-
proaches bear the risk of model mis-specification. The conclusion draw from a wrong regression
model could be either misleading or lacking power. For example, Baek and Brock (1992) show
a constructed example where nonlinear causal relations cannot be detected by traditional linear
causality test.
A series of studies tried to relax the influence of parametric model assumptions and provide

many nonparametric versions of Granger causality tests. Among all nonparametric approaches,
the Hiemstra and Jones (1994) test is one of the most far-reaching tests. By modifying the
Baek and Brock (1992) nonparametric methodology, Hiemstra and Jones firstly developed a
nonparametric test to detect nonlinear causality in weakly dependent stochastic data. However,
the Hiemstra-Jones test is suffering from an over-rejection problem, which why it was then
modified by Diks and Panchenko (2006), who proposed a new test statistic (hereinafter referred
to as DP test). Other alternative tests include additive models by Bell, Kay, and Malley (1996),
the Hellinger distance measure by Su and White (2008), and empirical likelihood ratio based
test by Su and White (2014).
The scope of this paper is to provide a novel test for Granger causality, based on an in-

formation theoretic notion transfer entropy, which was coined by Schreiber (2000). Transfer
entropy is initially used to measure asymmetric information exchanged in a bivariate system.
By using appropriate conditional densities, transfer entropy is able to distinguish information
that is actually transferred from shared information due to common history. This property
makes it attractive for detecting conditional dependence, i.e. Granger causality. We refer to
Hlaváčková-Schindler, Paluš, Vejmelka, and Bhattacharya (2007), Amblard and Michel (2012)
for detailed reviews of the relation between Granger causality and directed information theory.
The application of concepts from information theory into time series analysis has been proved

difficult, though attractive, due to the lack of asymptotic theory. For example, Granger and
Lin (1994) normalize entropy to detect serial dependence using critical values obtained by
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simulation. Later Hong and White (2005) achieve asymptotic Normality for entropy measure,
but the asymptotic only holds for a specific kernel function. Barnett and Bossomaier (2012)
establish an asymptotic χ2 distribution for transfer entropy estimator under finite Markov
chain assumption. Establishing asymptotic distribution theory for fully nonparametric transfer
entropy measure is challenging, if not impossible.
In this research, we propose a test statistic based on first order Taylor expansion of transfer

entropy, which follows Normal distribution asymptotically. Instead of deriving the limiting
distribution of the transfer entropy itself, we bypass the problem by testing an implication of
the null hypothesis. Further we show that this new test statistic is closely related to the DP
test, but with an appealing property of non-negative definiteness.
This paper is organized as follows. Section 2 first provides a short introduction to nonpara-

metric test on Granger non-causality and DP test, followed by an example to show that DP
test is impotent against some alternatives because of the improper usage of non-negativity. Af-
terwards, information theory, and the testing framework of series expansion on transfer entropy
(hereafter TE) statistic is introduced. The close linkage of this novel test statistic with DP test
would be present, and the asymptotical normality is further proved by an order three U -statistic
representation. The optimal bandwidth selection rule is also discussed in section 2. Section 3
deals with Monte Carlo simulations. Three different data generating processes are considered,
direct comparison of size and power is presented between the modified DP test and DP test.
Section 4 considers two financial applications. In the first case, we apply our test on the stock
volume and return data to make a direct comparison with DP test; in the second application,
high frequency exchange rates of main currencies are tested. Finally, section 5 summaries.

2 A Transfer Entropy-Based Test Statistic for Granger non-

Causality

2.1 Nonparametric Granger non-Causality Tests

This subsection provides some basic concepts and definitions for Granger causality, and the
idea of nonparametric test on the conditional independence has been shown as well. In this
paper, we restrict ourselves to the bivariate setting as it is the most-accepted implementation,
although the generalization to multivariate density is possible in the context of transfer entropy
measure, which is defined as the expectation of log-likelihood functions.
Intuitively, in a bivariate system {Xt, Yt}, given two strictly stationary process {Xt} and
{Yt}, t ∈ Z, it is claimed that {Xt} Granger causes {Yt} if current and past values of {Xt}
contain some additional information beyond current and past values of {Yt} on the prediction of
future values of {Yt}. The linear Granger causality tests based on a parametric VAR model can
be seen as an example, where restrictions on conditional means, as a special case for conditional
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distributions, are tested.
In a more general manner, nonparametric tests for the null of Granger causality could be

rephrased in terms of conditional dependence between two series: {Xt} is a Granger cause of
{Yt} if the distribution of {Yt} conditional on its own history is not the same as conditional on
the histories of both {Xt} and {Yt}. If we denote the information set of {Xt} and {Yt} until
time t− 1 by FY,t−1 and FX,t−1, respectively, and use ‘∼’ to show equivalence in distribution,
we may give a formal and general definition for Granger causality. For a strictly stationary
bivariate system {Xt, Yt}, t ∈ Z, {Xt} is a Granger cause of {Yt} if, given lags lX , lY and k,

(Yt, ..., Yt+k) | ( FY,t−lY , FX,t−lX ) � (Yt, ..., Yt+k) | FY,t−lY .

In the absence of Granger causality, i.e. (Yt, ..., Yt+k) | ( FY,t−lY , FX,t−lX ) ∼ (Yt, ..., Yt+k) |FY,t−lY

has no influence on the distribution of future {Yt}. This is also referred to as Granger non-
causality and often expressed as conditional independence between {Xt} and {Yt}:

(Yt, ..., Yt+k) ⊥ (Xt−1, ..., Xt−lX ) | FY,t−lY . (1)

Granger non-causality, or eq. (1), lays the first stone for a nonparametric test without impos-
ing any parametric assumptions about the data generating process or underlying distributions
for {Xt} and {Yt}. We only assume two things here. First, {Xt, Yt} is a strictly stationary
bivariate process. Second, the process has a finite memory, i.e. p, q �∞. The second assump-
tion is needed in a nonparametric setting to allow conditioning on the past, as a finite Markov
property.
The null hypothesis of a Granger causality test is that H0 : {Xt} is not a Granger cause

of {Yt}, and Granger non-Causality under the null is statistically tested by investigating the
process {Xt, Yt}. Strictly speaking, we should refer to Granger non-causality test instead of the
well-accepted name Granger causality test. But in this paper, we will not distinguish the latter
from the former. Both terms are used to stand for the test on the conditional independence
between {Xt} and {Yt}.
For simplicity, we limit ourselves to detect only one-step-ahead effect by setting lX = lY = 1

and k = 0, which is the case of most practical interest. Further we define a three-variate vector
Wt asWt = (Xt, Yt, Zt), where Zt = Yt+1; andW = (X, Y, Z) is used when there is no danger of
confusion. Within the bivariate setting, W is a three dimensional continuous vector. By using
density functions f(.) and given lX = lY = 1 and k = 0, eq. (1) can be phrased as

H0 :
fX,Y,Z(x, y, z)

fY (y)
=
fY,Z(y, z)

fY (y)

fX,Y (x, y)

fY (y)
(2)
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for (x, y, z) in the support of W , or equivalently as

H0 :
fX,Y,Z(x, y, z)

fY (y)
− fY,Z(y, z)

fY (y)

fX,Y (x, y)

fY (y)
= 0 (3)

for (x, y, z) in the support of W . A nonparametric test on Granger non-causality seeks to find
statistical evidence of violation ofeq. (2) or eq. (3). There are many nonparametric measures
available for this purpose, some are mentioned previously. However, as far as we know, the
DP test, to be introduced below, is the only fully nonparametric test which is proved to have
correct size under the null hypothesis of no Granger causality.

2.2 The DP Test

Hiemstra and Jones (1994) first propose to test on eq. (2) by calculating correlation integrals
for each density and measuring the discrepancy between two sides of the equation. However
their test has been shown by literatures to suffer from severe size distortion due to a simple
fact that measuring each density separately needs not to deliver the same quantity implied by
eq. (2). To overcome the problem, Diks and Panchenko (2006) suggests to use a conditional
dependence measure by incorporating a local weighting function g(x, y, z) and formulate eq. (3)
in such a way:

E

[(
fX,Y,Z(X, Y, Z)

fY (Y )
− fY,Z(Y, Z)

fY (Y )

fX,Y (X, Y )

fY (Y )

)
g(X, Y, Z)

]
= 0 (4)

Under the null hypothesis of no Granger causality, the term within the round bracket vanish,
and the expectation goes to zero. eq. (4) can be treated as an infinite moment restrictions, as
commented by Diks and Wolski (2015). Although testing on eq. (4) instead of eq. (2) or eq. (3)
may lead to a loss of power against some specific alternatives, there is also an advantage to do
so. For example, the weighting function g(x, y, z) is assumed to be g(x, y, z) = f 2

Y (y) in DP
test as it delivers a U-statistic representation of the corresponding estimator, which enables
the analytically asymptotic distribution for the test statistic. In principal, other choices for
g(x, y, z) will also do as long as the test has satisfactory power against the alternatives. By
plug in g(x, y, z) = f 2

Y (y), DP tests on the implication of H0:

H ′0 : q ≡ E [fX,Y,Z(X, Y, Z)fY (Y )− fX,Y (X, Y )fY,Z(Y, Z)] = 0 (5)

Given a local density estimator of a dW -variate random vector W at Wi as

f̂W (Wi) = ((n− 1)h)−dW
n∑

j,j 6=i

K
(
Wi −Wj

h

)
(6)

where K is a kernel function and h is the bandwidth, the DP test develops a third order
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U -statistic estimator for the functional q:

Tn(h) =
(n− 1)

n(n− 2)

∑
i

(
f̂X,Y,Z(Xi, Yi, Zi)f̂Y (Yi)− f̂X,Y (Xi, Yi)f̂Y,Z(Yi, Zi)

)
(7)

where the normalization factor (n−1)/(n(n−2)) is inherited from the U -statistic representation
of Tn(h). It is worthwhile to mention that a second order uniform kernel K is adopted in Diks
and Panchenko (2006), however there are two main drawbacks of uniform kernel as we see it.
First, uniform kernel will yield a discontinuous density estimate f̂(·), which is not attractive
from practice perspective. Second, it weights all neighbor points Wj equally, overlooking their
relative distance to the estimation point Wi. Therefore, a smooth kernel function, Gaussian
kernel, is applied in this paper instead. Namely, K(.) is a product kernel function defined
as K(W ) =

∏dW
s=1 κ(w

s), where ws is sth element in W . Using standard univariate Gaussian
kernel, κ(ws) = (2π)−1/2e−

1
2
(ws)2 , K(.) is the standard multivariate Gaussian kernel as described

in Wand and Jones (1994) and Silverman (1986).
For lX = lY = 1, Diks and Panchenko (2006) proves the asymptotic normality of Tn(h).

Namely, if the bandwidth h depends on the sample size in such way that h = Cn−β for C > 0

and β ∈ (1
4
, 1
3
), the test statistic in eq. (7) satisfies:

√
n
Tn(h)− q

Sn

d−→ N(0, 1) (8)

where d−→ denotes convergence in probability and S2
n is a consistent estimator of the asymptotic

variance of Tn(h). Diks and Panchenko (2006) suggests to implement a one-sided version of the
test, although q is not (almost) positive definite, rejecting H ′0 against the alternative Ha : q > 0

if eq. (7) is too large. In other words, given the asymptotic critical value z1−α, the null hypothesis
H ′0 is rejected if

√
n(Tn(h)− q)/Sn > z1−α at significance level α.

The crucial defect of DP test arise from the fact that H ′0 in eq. (5) need not to be identical
to H0 in eq. (2) and eq. (3). If H ′0 is equivalent to H0, then q forms a suitable basis for DP test
on Granger non-causality. However this equivalence depends on a subtle property of q:

Property 1. q is non-negative in such a way that q ≥ 0 with equality if and only if Xt and Zt
are conditionally independent given Yt.

From previous reasoning, it is obvious that eq. (5) is implied by eq. (3), and Prop. 1 states
that a strictly positive q is achieved only if H0 is violated. In other words, the null hypothesis
of Granger non-causality requites that Xt and Zt are independent conditional on Yt, which is
just a sufficient, but not necessary, condition for q = 0. With Prop. 1, H ′0 coincides with H0

and a consistent estimator of q, i.e. Tn(h) as suggested by DP, will have unit asymptotic power.
If this property is not satisfied, a test on q = 0 could deviate from the test on H0. Although
Diks and Wolski (2015) proves for some specific classes of processes that the property holds, we
could easily construct a counterexample to show that DP test has no power even Xt strongly

6



Granger causes Zt.
Inspired by the example in Skaug and Tjøstheim (1993) where a closely related test for

unconditional independence are performed, we may come up with its conditional counterpart
to illustrate that q is not positive definite. Hence the one-sided DP test will suffer from lacking
power as a consequence. As we show below, in an extreme case when q = 0, this drawback
cannot be overcome even with a two sided DP test.
Consider the process {Xt, Yt, Zt} where Zt ≡ Yt+1 as before. We assume that Xt ∈ [−1, 1]

i.i.d, with probability 1−d being positive, where 0 < d < 1. Further, there are no instantaneous
dependence between Xt and Yt; i.e. Zt does not depend on Yt but on Xt in such a way that the
joint density of (Xt, Zt) is given by

p(Xt, Zt) =



1− 2d, if 0 ≤ Xt ≤ 1, 0 ≤ Zt ≤ 1

d, if 0 ≤ Xt ≤ 1, −1 ≤ Zt < 0

d, if − 1 ≤ Xt < 0, 0 ≤ Zt ≤ 1

0, if − 1 ≤ Xt < 0, −1 ≤ Zt < 0

(9)

Equivalently, the conditional density of Zt on {Xt, Yt} is determined as p(0 < Zt ≤ 1|(Xt, Yt)) =

1 if −1 ≤ Xt < 0 and p(0 ≤ Zt ≤ 1|(Xt, Yt)) = (1− 2d)/(1− d) if 0 ≤ Xt ≤ 1. In this setting,
as long as d 6= 0, Xt is a Granger cause of Yt since it has an impact on the distribution of future
values of Yt. Then it is not difficult to analytically calculate q defined in eq. (5). Particularly
one finds that q = d2 ((1− d)3 + d3) (4d − 1). For 0 < d < 1

4
, q ends up with negative value.

In this situation, the one-sided DP test, which rejects significantly positive q, is not a proper
test on Granger non-causality. One may argue this is not a problem if we use a two-sided test
at the price of losing some power. However, the severe inconsistence between DP test on H ′0
and the initial purpose of testing H0 is illustrated by considering q = 0, which is the case when
d = 1

4
. Therefore Xt is clearly a Granger cause of Yt, however DP test fails to detect this

specific conditional independence.
Figure 1 reports the test power of the one-sided DP test against sample size at different

significance levels, based on 10,000 independent replications. Three nominal sizes are illustrated
here: 5%, 10% and 15%, and the sample size goes from 100 to 20,000. It is striking from fig. 1
that the DP does not have power at all to reject the alternative for this artificial process. Same
conclusion can be made based on fig. 2, where the power-size plots are given. For almost all
sub-panels with different sample sizes, the power of DP test is slightly lower if not close enough
to the theoretical size for this particular example when q = 0, which indicate that DP test has
only trivial power to detect Granger causality from Xt to Yt.

[Figure 1 about here.]

[Figure 2 about here.]
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The complete failure of the one-sided DP test in this example is hardly to be alleviated by its
two-sided counterpart, as a result of the absence of equivalence between q = 0 and conditional
independence. Without Prop. 1, the inconsistence between H ′0 and H0 gives rise to the defect
of DP test. In the next subsection, a new test statistic based on an information theoretical
concept, transfer entropy, is introduced and the test statistic is shown to be almost positive
definite, which in return overcomes the inherited defect of DP test. In fact, this new test statistic
shares many similarities with DP test statistic, but provided with a concrete interpretation for
its non-negativity based on information theory.

2.3 Information Theory-Based Interpretation

In a very different field from econometrics research on conditional dependence, the problem of
feedback and impact information theory also has drawn many attentions since 1950. Inform-
ation theory, as a branch of applied mathematical theory of probability and statistics, studies
the transmission of information over a noisy channel. Entropy, also refers to Shannon entropy,
is one key measure in the field of information theory brought by Shannon (1948, 1951). Entropy
measures the uncertainty and randomness associated with a random variable. Suppose S is a
random vector with density fS(s), Shannon entropy is defined as:

H(s) = −
∫
fS(s) log{fS(s)}ds.

There is a long history of applying information measures in econometrics. For example,
Robinson (1991) applies Kullback and Leibler (1951) information criterion to construct a one-
sided testing for serial independence. Since then, nonparametric testing using entropy measure
for independence between two time series are becoming prevalent. Granger and Lin (1994) nor-
malize entropy measure to identify the lags in a nonlinear bivariate model. Granger, Maasoumi,
and Racine (2004) study dependence with a transformed metric entropy, which turns out to
be a proper measure of distance. Hong and White (2005) provide a new entropy-based test for
serial dependence, and the test statistic follows standard normal distribution asymptotically.
Although those research are heuristic, their methodologies cannot be applied directly to meas-

ure conditional dependence, i.e., Granger causality. Transfer entropy(TE) named by Schreiber
(2000), although appeared in literatures earlier under different names, is a suitable measure to
serve this purpose. TE quantifies the amount of information explained in one series at k steps
ahead from the state of another series, given the current state of itself. It would be helpful to
briefly introduce TE and Kullback-Leibler criterion before we further discuss its relation with
the modified DP test.
Suppose we have two series {Xt} and {Yt}, for brevity put X = {Xt}, Y = {Yt} and

Z = {Yt+k}. Again we limit lag period k = 1 for simplicity, and define the three-dimensional
vector W = (X, Y, Z) same as before. Transfer entropy TEX→Y is a nonlinear measure for the
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amount of information explained in Z by X, accounting for the contribution of Y . Although TE
defined by Schreiber (2000) applies for discrete variable, it is easily generalized to continuous
variables. Conditional on Y , TEX→Y is defined as

TEX→Y = EW

(
log

fZ,X|Y (Z,X|Y )

fX|Y (X|Y )fZ|Y (Z|Y )

)
=

∫ ∫ ∫
fX,Y,Z(X, Y, Z) log

fZ,X|Y (Z,X|Y )

fX|Y (X|Y )fZ|Y (Z|Y )
dxdydz

= EW

(
log

fX,Y,Z(X, Y, Z)

fY (Y )
− log

fX,Y (X, Y )

fY (Y )
− log

fY,Z(Y, Z)

fY (Y )

)
= EW (log fX,Y,Z(X, Y, Z) + log fY (Y )− log fX,Y (X, Y )− log fY,Z(Y, Z)) .

(10)

Using conditional mutual information I(Z,X|Y = y), TE can be equivalently formulated with
four Shannon entropy terms:

TEX→Y = I(Z,X|Y )

= H(Z|Y )−H(Z|X, Y )

= H(Z, Y )−H(Y )−H(Z,X, Y ) +H(X, Y ).

In order to construct a test for Granger causality based on TE measure, one needs first
to show quantitatively TE is a proper basis for detecting whether null hypothesis is satisfied.
Namely, it has to be proved that there exists an analogue property for TE such as Prop. 1 for
q in DP test. The following theorem, as a direct application of Kullback-Leibler criterion, lays
the quantitative foundation for testing on TE.

Theorem 1. TEX→Y ≥ 0 with equality if and only if fZ,X|Y (Z,X|Y ) = fX|Y (X|Y )fZ|Y (Z|Y ).

Proof. The proof to Thm. 1 can be given by generalizing Theorem 3.1 in Chapter 2 of Kullback
(1968), where the divergence between two different densities has been measured. An alternative
proof is given in appendix A.1 by using Jensen’s inequality and concavity of log function.

It is not difficult to verify that the condition for TEX→Y = 0 coincide with eqs. (2) and (3)
defined for Granger non-causality under the null hypothesis. This non-negative property makes
TEX→Y a desirable statistic for constructing a one-sided test of Granger causality: any diver-
gence from zero is a sign of conditional dependence of Y on X. To estimate TE, one may follow
the recipe of Kraskov, Stögbauer, and Grassberger (2004) by measuring k-nearest neighbour
distances. A more natural method, as we applied is this paper, is to use the plug-in kernel
estimates eq. (6) of densities, and replace the expectation by sample average.
However, the direct use of TE to test Granger non-causality is doomed due to the lack of

asymptotic theory for the test statistic. As Granger and Lin (1994) put it, very few asymptotic
distribution results for entropy based estimator is available. Although over these years several
break-throughs have been made with application of entropy to testing serial independence, like
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Robinson (1991) obtained an asymptotic N(0, 1) distribution for an entropy measure by a data
splitting device and Hong and White (2005) derived an asymptotic normal distribution under
bounded support and quartic kernel assumptions, the limiting distribution of TE statistic is
still in myth.
One may argue to use simulation techniques to overcome the problem of lacking asymptotic

distribution. However, as suggested by Su and White (2008), there exists estimation biases of
TE statistics for non-parametric dependence measuring under smoothed bootstrap procedure.
Even with a parametric test statistics as defined in Barnett and Bossomaier (2012), the au-
thors noticed that the TE based estimator is generally biased. Surrogate data is also applied
widely by, among others, Wibral, Pampu, Priesemann, Siebenhühner, Seiwert, Lindner, Lizier,
and Vicente (2013) and Papana, Kyrtsou, Kugiumtzis, and Diks (2016) to detect information
transfers, though the time-shifted technique potentially may destroy the conditional depend-
ence structure in the data set. Direct usage of TE for non-parametric Granger non-causality
test is considered difficult, if not impossible. First order Taylor expansion on TE, on the other
hand, provides a way-out to construct the asymptotic distribution of this meaningful inform-
ation measure. In the next section, we will show that the first order Taylor expansion of TE
is identical to a modified DP test statistic. This equivalence not only helps to circumvent the
problem of asymptotic distribution for entropy based statistic, but also endows the modified
DP statistics t non-negativity, which is missing in DP test statistic. We simply kill two birds
with one stone.
The remaining part of this section will introduce the first order Taylor expansion of TE, and

the non-negative definiteness of the statistic will be given afterwards. Starting with eq. (10),
we perform the first order Taylor expansion locally at TEX→Y = 0:

TEX→Y = EW

[
log

fZ,X|Y (Z,X|Y )

fX|Y (X|Y )fZ|Y (Z|Y )

]
= EW

[
log

(
1 +

(
fZ,X|Y (Z,X|Y )

fX|Y (X|Y )fZ|Y (Z|Y )
− 1

))]
= EW

[
fZ,X|Y (Z,X|Y )

fX|Y (X|Y )fZ|Y (Z|Y )
− 1

]
+ h.o.t.,

(11)

By ignoring higher order terms, we define the first order expansion as the test statistic t =
EW

[
fZ,X|Y (Z,X|Y )

fX|Y (X|Y )fZ|Y (Z|Y )
− 1
]
. The following theorem proves that t inherits the non-negative

definiteness of TE.

Theorem 2. t ≥ 0 with equality if and only if fZ,X|Y (Z,X|Y ) = fX|Y (X|Y )fZ|Y (Z|Y ).

Proof. See appendix A.2

Thm. 2 indicates that the statistic t has the desirable property of non-negativity, which is
absent for the original DP test. However, direct estimation of eq. (11) does not deliver a mean-
ingful test statistic because the asymptotic distribution is missing. In the next subsection, by
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incorporating a different weight function v(x, y, z), a modified DP test statistics actually repro-
duces the first order Taylor expansion of transfer entropy measure, which provides theoretical
interpretation for the directional information interaction between {Xt} and {Yt}.

2.4 A Modified DP Test

In comparing eq. (3) and eq. (4), it can be seen that the discrepancy between H ′0 and H0

arises from incorporation of the weighting function g(x, y, z) = f 2
Y (y) to the null hypothesis. In

principal, a different positive function g(x, y, z) will also work, such as those discussed in Diks
and Panchenko (2006). As long as the weighting function does not sabotage the U-statistic
representation, the asymptotic Normal distributions is maintained. Particularly, we propose to
modify DP test by dividing all terms in the expectation of eq. (5) by another weighting function
v(x, y, z) defined as v(x, y, z) = (fX,Y (x, y)fY,Z(y, z)). Similar to the discussion in Section 2.2,
we test on the implication of H0 instead of the null directly, and the new implication of H0 has
the form of

H ′′0 : E

[
(fX,Y,Z(X, Y, Z)fY (Y )− fX,Y (X, Y )fY,Z(Y, Z))

1

v(X, Y, Z)

]
= 0 (12)

One can also think of eq. (12) as a result of plugging in a different weighting function in
eq. (4). By defining g(x, y, z) = f 2

Y (y)/(fX,Y (x, y))(fY , Z(y, z)) instead of g(x, y, z) = f 2
Y (y)

suggested by DP, eq. (12) simplifies to

H ′′0 : t ≡ E

[
fX,Y,Z(X, Y, Z)fY (Y )

fX,Y (X, Y )fY,Z(Y, Z)
− 1

]
= 0, (13)

which is equivalent to the first order Taylor expansion in eq. (11). To estimate this t, we propose
to use the following statistic with density estimator defined in eq. (6):

T ′n(h) =
(n− 1)

n(n− 2)

∑
i

[(
f̂X,Y,Z(Xi, Yi, Zi)f̂Y (Yi)− f̂X,Y (Xi, Yi)f̂Y,Z(Yi, Zi)

) 1

v̂(Xi, Yi, Zi)

]
(14)

The reason not estimating t directly is that, with the sample statistic T ′n(h), we could restore
an order three U-statistic representation of t, similar to the one for DP test statistic, from
where the asymptotic normality can be derived. Thm. 3 states this formal result. The proof of
Thm. 3 relies on the following two lemmas.

Lemma 1. Let {Wi = (Xi, Yi, Zi)}, i ∈ N be a sequence of k-dimensional random variables
with Lebesgue density f . For the estimation of f , we use the kernel estimator f̂ with kernel
function K(w) defined in eq. (6). If f(w) is continuous at w ∈ Rk and K(w) is of bounded
variation, then

supw∈Rk |f̂(w)− f(w)| → 0 a.s.,

provided with any of the following two conditions:
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(A1) Wi is an independent sequence and either

∞∑
i=1

e−γih
2k

, for all γ > 0

or (
log log i

i
)1/2k = o(h)

(A2) Wi is φ-mixing, Al(φ) <∞ (for definition of Al(φ) see Sen et al. (1974) (2.1)) and

∞∑
i=1

(
γ

hki1/2
)2(l+1) <∞, for all γ ∈ R+.

Proof. Lemma 1 is Theorem 1 in Rüschendorf (1977) and the proof is given there.

Lemma 1 shows the uniformly consistent with probability one for a class of kernel estimators
of multivariate density functions. This is a generalization of the consistency result of the
univariate density estimation of Nadaraya (1965) and Schuster (1969) to the multivariate case.
Note that we impose a stronger consistency than the pointwise weak consistency. The pointwise
convergency, which cannot assure global convergency after aggregation over each point, may
not sufficient to serve our purpose here. We refer to Wegman (1972) and Wied and Weißbach
(2012) for detailed discussion between different types of convergency. Based on lemma 1, we
have not only local convergence as f̂(.)→ f(.) a.s. when n→∞, but also v̂(x, y, z)→ v(x, y, z)

a.s. globally as a result.

Lemma 2. Suppose v̂(xi, yi, zi) is a consistent estimate of v(xi, yi, zi) a.s., T ′n has the same
limiting distribution as the one with v̂(.) replaced by v(.) if the asymptotic distribution exists.
Formally, if we denote the statistic containing a true v(.) by T̃ ′n, then we have

(T ′n − T̃ ′n) = oP (
1√
n
).

Proof. See appendix A.3

Theorem 3. Given the gaussian kernel, let the bandwidth tends to zero with n as h = Cn−β, C >

0, β ∈ (1
4
, 1
3
), the statistic T ′n satisfies

√
n
T ′n(h)− t

Sn

d−→ N(0, 1),

where S2
n is a consistent estimator of the asymptotic variance σ2 = 9var[limh→∞(K̃1(Wi, h)/v(Wi, h))].

Proof. See appendix A.4

Thm. 4 assures that the modified DP statistic T ′n(h) is not degenerated thus may be used for
performing a statistical test.

Theorem 4. The limiting distribution of the modified DP test statistic is not degenerated.
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Proof. See appendix A.5

Final comment on eq. (14) goes to the treatment of marginals. Although our testing frame-
work does not depend crucially on the restrict assumption of uniform distribution for the time
series as in Pompe (1993) and Hong and White (2005), we recommend to use the probability in-
tegral transformation (PIT), the synonymy of uniform transformation, which usually improves
the performance of statistical dependence test, as Diks and Panchenko (2006) suggest. The
reason as we see it is that, contrary to direct testing on the original data, the bounded support
after marginal transformation avoids calculating indefinite integral in the sense of bias and vari-
ance evaluation, which helps to stabilize the test statistic. There are more ways to transform
the marginal variables into a bounded support than PIT, for example, by using Epanechnikov
quadratic kernel. However for practical convenience, we would only apply PIT. The procedure
is to transform the original series {Xt} ({Yt}) to {UX

t } ({UY
t }) such that {UX

t } ({UY
t }) is the

empirical CDF of {Xt} ({Yt}) and the empirical distribution of {UX
t } ({UY

t }) is uniform. As-
suming Xt and Yt are continuous, the PIT transformation is almost everywhere invertible and
the dependence structure between Xt and Yt remains intact in the pair of UX

t and UY
t . An extra

merit of our test is that T ′n is constructed to be invariant under PIT transformation due to the
division form; the DP test, on the other hand, is not invariant since marginal transformation
has a direct impact on the value of Tn in eq. (7).
As proved by Thm. 2, the transfer entropy based statistic is typically positively deviate from

zero under Ha. Thus tests based on the statistic T ′n(h) can be implemented as one-sided test,
namely, for a given significance level α, the null hypothesis is rejected if

√
n(T ′n(h) − t)/Sn >

z1−α, where z1−α is the (1− α)th quantile of standard Normal distribution. Although DP test
also exploits one-sided significance level to achieve a higher power, as we argued before, the
theoretical ground for its non-negativity is missing.

2.5 Bandwidth Selection

For nonparametric test, there is no uniformly most powerful test against all alternatives. Hence
it is less likely that a uniformly optimal bandwidth exists. As long as the bandwidth tends to
zero with as h = Cn−β, C > 0, β ∈ (1

4
, 1
3
), asymptotically our test has uniform power. Yet, we

may define the optimal bandwidth in the sense of minimal asymptotical mean squared error
(MSE). When balancing the first and forth leading terms in eq. (A.7) to minimize squared bias
and variance, for second order kernel, it is easy to show that the optimal bandwidth for DP
test is given by

hDP = Cn−2/7, where C =

(
18 ∗ 3q2

4(E[s(W )])2

)1/7

, (15)

with q2 and E[s(W )] the series expansion for second moment of kernel function and expectation
of bias, respectively. Since the convergence rate of MSE, derived in appendix A.4, is not affect
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by the way we construct the new test statistic, the derivation for eq. (15) remain intact and we
simply calibrate the optimal bandwidth for our new test as

h∗ ≈ 0.6hDP , (16)

where the scale factor 0.6 involved as a result of bias and variance adjustment for replacing
Square kernel by Gaussian kernel. Intuitively, the q2 and E[s(W )] terms are different from the
ones in DP test, more details can be found in appendix A.6.
The optimal value for C is process-dependent and difficult to track analytically. For example,

Diks and Panchenko (2006) demonstrated that for (G)ARCH process, the optimal bandwidth
is approximately given by hDP = Cn−2/7 where C ≈ 8. After calibration, we proceed with
h∗ = 4.8n−2/7 for (G)ARCH process. To gain some insights about this bandwidth, we illustrate
the test size and power with a 2-variate ARCH process

Xt ∼ N(0, 1 + aY 2
t−1)

Yt ∼ N(0, 1 + aY 2
t−1).

(17)

We let 0 < a < 0.4 and run 5,000 Monte Carlo simulations for time series length varies from
200 to 5000. The size assessment is delivered based on testing Granger non-causality from
{Xt} to {Yt}, and for the power we use the same process but testing on Granger non-causality
from {Yt} to {Xt}. The result is presented in table 1, from where we see that the MDP test is
conservative in the sense that empirical size is lower than the nominal 0.05 in all cases, while
the power converges to unit when a increases or sample size goes larger.

[Table 1 about here.]

3 Monte Carlo Simulations

This section investigates the performance of the modified DP test. Before proceeding with new
data generating processes, we first revisit the example illustrated in eq. (9) where DP test fails
to detect any impact of X on Y . The modified DP test is performed with 10,000 replications
again, with the same bandwidth. The counterpart of power-size plots for DP test in fig. 2 is
delivered in fig. 3. Contrast with the impotence of DP test, for time series length n = 500

and larger, the modified DP test already has a very high power in this artificial experiment, as
expected.

[Figure 3 about here.]

Next, we use numerical simulations to study the behavior of modified DP test, while direct
comparisons between the modified DP test T ′n with the DP test Tn are also given. Three
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processes have been considered. In the first experiment, we consider a simple bivariate VAR
process:

Xt = aYt−1 + εx,t, εx,t ∼ N(0, 1)

Yt = aYt−1 + εy,t, εy,t ∼ N(0, 1).
(18)

[Figure 4 about here.]

The second experiment is designed as a nonlinear VAR process in eq. (19). Again the size
and power are investigated by testing on Granger non-causality from two different directions.

Xt = 0.6Xt−1 + aXt−1Yt−1 + εx,t, εx,t ∼ N(0, 1)

Yt = 0.6Yt−1 + εy,t, εy,t ∼ N(0, 1).
(19)

[Figure 5 about here.]

The last experiment is same as the example we used for illustrating the performance of the
bandwidth selection rule, which is a bivariate ARCH process as in eq. (17):

Xt ∼ N(0, 1 + aY 2
t−1)

Yt ∼ N(0, 1 + aY 2
t−1).

(20)

[Figure 6 about here.]

Results in figs. 4 to 6 are obtained with 5,000 iterations for each simulation. We present DP
test and modified DP test with both empirical size-size plot and size-power for three processes in
eqs. (18) to (20) for sample size n = 500 and n = 5000, respectively. The controlling parameter
a is considered to take values 0.1 and 0.4. As before, the empirical size is obtained on testing
Granger non-causality from {Xt} to {Yt}, and the empirical power is the rejection rate of test
on Granger non-causality from {Yt} to {Xt}.
It can be seen from the figures that the modified DP test is slightly more conservative than

DP test under the null hypotheses. However the size distortion is relived when sample size
increases. The modified DP test in eqs. (18) and (19) is more powerful than DP test in the
linear and nonlinear VAR settings. Overall, we see that the larger sample size and stronger
causal effect, the better asymptotic performance for modified DP test.

4 Empirical Research

4.1 Stock Volume and Return Relation

In this section, we first re-visit the stock return-volume relation as Hiemstra and Jones (1994)
and Diks and Panchenko (2006) did. There has been a long research history on this topic. Early
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empirical works mainly focused on the positive correlation between volume and stock price
change, see Karpoff (1987). Later literatures exposed the directional relations, for example,
Gallant, Rossi, and Tauchen (1992) found that large price movements are followed by high
volume; Gervais, Kaniel, and Mingelgrin (2001) observed the high-volume return premium,
namely, periods of extremely high (low) volume tend to be followed by positive (negative)
excess returns. More recently, Podobnik, Horvatic, Petersen, and Stanley (2009) investigated
the power law cross-correlations between price changes and volume changes of the S&P 500
Index over a long period.
We use daily volume and returns data for the three most-followed indices in US stock markets,

the Standard and Poor’s 500 (S&P), the NASDAQ Composite (NASDAQ) and the Dow Jones
Industrial Average (DJIA), between January 1985 and October 2016. Yahoo Finance is the
source of the daily volume and adjusted daily closing prices. All data is converted by taking
logs and log returns are multiplied by 100. In order to adjust for the day-of-the-week and
month-of-the-year seasonal effects in both mean and variance of stock returns and volumes, we
perform a two stage-adjustment process, similar to the procedure applied in Hiemstra and Jones
(1994)1. We apply our test on not only the raw data, but also the VAR filtered residuals and
the EGARCH(1,1,1) filtered residuals.2 The idea of filtration is to remove linear dependence
and the effect of heteroscedasticity to test on the nonlinear, high-moment relationships among
series.
Tables 2 to 4 report the resulting T statistics for both DP test and our modified DP test in

both directions. The linear Granger F-values based on the optimal VAR models are also given.
Two bandwidth values are used: 1.5 and 0.6, where the latter one 0.6 roughly corresponds
to the optimal bandwidth (h = 0.6138) and the larger bandwidth 1.5 also used in Diks and
Panchenko (2006) checks for the robustness.

[Table 2 about here.]

[Table 3 about here.]

[Table 4 about here.]

Generally speaking, the results indicate the effect in the return-volume direction is stronger
than the other way around. For the test results on the raw data, the F -tests based on the
linear VAR model and both nonparametric tests suggest evidence of Return affecting Volume
for all three Indexes. For the other direction, causality from Volume to Return, linear Granger
test has no power at all while the nonparametric tests claim strong causal effect except for the

1We replace Akaike’s information criterion used by Hiemstra and Jones (1994) with Schwarz et al. (1978)
information criterion to be more stringent on picking up variables. Having no intention to provoke the debate
over the two criteria, we simply prefer a more parsimonious liner model to avoid potential overfitting.

2We have tried different error distributions like Normal, Students’t, GED and Hansen (1994)’s skewed t.
The difference caused by different distribution assumptions are ignorable. Thus we only report for the result
based on Students’t for simplicity.
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DJIA case where only the modified DP test sticks to the affection of Volume on Return. As
argued before, the linear test is doomed since it only examines linear causal effect in the mean,
information exchange from higher moments are completely ignored.
The direct comparison between the DP test and the modified DP test shows that the new

test is more powerful overall. For the unfiltered data, both tests find strong causal effect in two
directions for S&P and NASDAQ, but for DJIA series, the t-statistics of DP test are weaker
than that of the modified DP test. The bi-directional causality between Return and Volume
remain unchanged after linear VAR filtration, though DP test again shows weaker evidence.
The result also suggests that the causality is strictly nonlinear. The linear test (F -test) either
overlooks the nonlinear inkages, or is unable to spot its nonlinear nature.
Further, in the direction of Volume to Return, these nonlinear causality tend to vanish after

EGARCH filtering. Thus the bi-directional linkage is reduced to an one-directional relation
from Return to Volume. The modified DP statistics, however, are in general larger than that
of DP t-values, and finds more causal relations than DP test does. On the contrary to DP test,
our test suggests that the nonlinear causality cannot be completely attributed to the second
moment effect. Heteroscedasticity modeling may reduce the nonlinear feature to some extent,
but its impact is not as strong as DP test claims. As argued in previous sections, the DP test
may suffer from the problem of lacking power due to its vulnerable non-negativity property.

4.2 Application to Intraday Exchange Rate

In the second application, we apply the modified DP test to intraday exchange rates. We
consider five major currency: JPY/USD, AUD/USD, GBP/USD, EUR/USD and CHF/USD.
The data, obtained from Dukascopy Historical Data Feed, contain 5-minute bid and ask quotes
for the third quarter of 2016; from July 1 to September 30, with a total of 92 trading days
and 26496 high frequency observations. We use 5-minute data, corresponding to the sampling
frequency of 288 times per day, which is high enough to avoid measurement errors (see Andersen
and Bollerslev (1998)) but also low enough such that the microstructure is not the major
concern.
Although exchange market is one of the most active financial market in the world, where

trading takes 24 hours a day, the intraday trading is not always active. Thus we delete the thin
trading period, from Friday 21:00 GMT until Sunday 20:55 GMT, also to keep the intraday
periodicity intact. We calculate the exchange rate returns as in Diebold, Hahn, and Tay (1999).
First the average log bid and log ask prices are calculated, then the difference between the log
prices at consecutive time stamps are obtained. Next, we remove the conditional mean dynamics
by fitting a MA(1) model and using the residuals as our return series following Bollerslev and
Domowitz (1993). Finally the intraday seasonal effect is filtered out by using the estimated
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time-of-day dummies in a way similar to Diebold, Hahn, and Tay (1999), i.e.

ri,n,t = di,tzi,n,t. (21)

Here ri,n,t denotes the continuously intraday log returns after MA(1) filtration. Subscript
i = 1, ..., 5 indicates five different currency and n, t stands for time t in day n. The first
component of return series di,t refers to a deterministic intraday seasonal component while zi,n,t
is the nonseasonal return portion, which assumed to be independent of di,t. To distinguish
di,t from zi,n,t, we fit the time-of-day dummies to 2 log |ri,n,t| and use the estimated d̂i,t to
standardize the return ri,n,t with the restriction

∑T
t=1 di,t = 1. Figures 7 to 9 report the first

200 autocorrelations of returns, absolute returns and square returns, when checking on the raw
series, MA(1) filtration residuals and EGARCH filtration residuals, respectively.

[Figure 7 about here.]

[Figure 8 about here.]

[Figure 9 about here.]

We perform the pairwise nonparametric Granger causality test on the conditional mean and
seasonal effect removed data, as well as on the standardized residuals after EGARCH(1,1,1)
filtration. We use Hansen (1994)’s skewed t distribution to model the innovation terms. We
choose bandwidth at 0.2768, by applying eq. (16).

[Table 5 about here.]

The testing results are shown in table 5 for both MA(1) demeaned and de-seasoned data, as
well as EGARCH filtered data. Although not reported here, there exist strong bi-directional
causality among all currency pairs on raw return data at 5-minute lag. These bi-directional
causalities do not die out after removing MA(1) component and seasonal component. However,
the observed information spillover is significantly weaken after the EGARCH filtration. When
testing on the EGARCH variance standardized residuals, only few pairs still show a sign of a
strong causal relation. Especially, the directional relation of EUR→ CHF is the only one spot
by both DP test and modified DP test at 1% level. An graphic representation is depicted in
fig. 10, where clearly we see most causal links are gone after EGARCH filtration. The modified
DP test exposes five uni-directional linkages on the EGARCH filtered returns at 5% level. EUR
and GBP are the most important driving currencies. While DP test also admits the importance
of JPY and particularly AUD which has bi-directional causality with JPY and GBP.

[Figure 10 about here.]
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To sum up, we find the evidence of strong causalities among exchange returns on intraday
high-frequency level. Each currency has predictive power on other currencies, implying the
high co-movement in the international exchange market. Although those directional linkages
are not affected by demeaning procedure, we may reduce most of them by taking the volatility
dynamic into account. When filtering out heteroscedasticity by EGARCH estimation, there
only exist few pairs containing spillover effect.

5 Summary and Conclusions

Borrowing the concept of transfer entropy from Information Theory, this paper develops a novel
non-parametric test statistic for Granger non-causality. The asymptotical Normality is achieved
by taking advantage of an order-three U -statistic representation initially applied in DP test.
The modified DP statistic, however, overwhelms the DP statistic in at least the two aspects:
firstly, non-negativity, while missing for DP statistic, is a natural property for our statistic,
which paves the way for properly testing difference between conditional densities; secondly, the
weighting function in our test is justified by the theoretical information representation, while
the weighting function in DP test is an arbitrary selection. Simulation studies show that our
modified DP test provides a reasonable size and power for different data generating processes.
In the first application, direct comparison with DP test again suggests that the lacking of
rejections in DP test may be suspicious, while the second application to high frequency exchange
return data may help us better understand whether the spillover channel in exchange market
arises from mean, variance or higher moments. These applications of different data frequency
indicate possibilities for future empirical research. One possible extension to current work is
incorporating more lags under multivariate setting, in which case the asymptotical theory is
needed.
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A Appendix

A.1 Proof for Non-Negativity of Transfer Entropy

According to the definition of TE in eq. (14), essentially the expectation over the logarithm of
the density ratio is evaluated: TEX→Y = EW

(
log

fZ,X|Y (Z,X|Y )

fX|Y (X|Y )fZ|Y (Z|Y )

)
. Define the reciprocal of

the density ratio in the logarithm as a random variable R in such a way: R =
fX|Y (X|Y )fZ|Y (Z|Y )

fZ,X|Y (Z,X|Y )
,

we could rewrite TE as TEX→Y = E (− log(R)). Since log(R) is a concave function of R,
following Jensen’s inequality we have

E (log(R)) ≤ log (E(R)) . (A.1)

Next, as random variable R is nonnegative since it is defined as a fraction of densities. For
any realization of R = r > 0, log(r) ≤ r − 1. This is because as a concave function, log(r) is
bounded from above by the tangent line at point (1,0), which is given by r− 1. It follows that

log (E(R)) ≤ E(R)− 1. (A.2)

Combining eqs. (A.1) and (A.2), we have E (log(R)) ≤ E(R)−1 = 0, where the last equality
holds simply as a result of integral of the pdf over its full support delivering 1. A similar
argument can be found in Diks (2009). Thus, we has proved that TEX→Y ≡ −E (log(R)) ≥ 0.
It is obvious that the equity holds if and only if R = 1, which is equivalent to claim that
fZ,X|Y (Z,X|Y ) = fX|Y (X|Y )fZ|Y (Z|Y ). This completes the proof for Thm. 3.

A.2 Proof for Non-Negativity of the First Order TE Statistic

Starting from eq. (11) and the definition of t,

t = EW

(
fZ,X|Y (Z,X|Y )

fX|Y (X|Y )fZ|Y (Z|Y )
− 1

)
=

∫ ∫ (
f 2
Z,X|Y (z, x|y)

fX|Y (x|y)fZ|Y (z|y)
− fZ,X|Y (z, x|y)

)
dx|ydz|y

=

∫ ∫
fX|Y (x|y)fZ|Y (z|y)

(
f 2
Z,X|Y (z, x|y)

f 2
X|Y (x|y)f 2

Z|Y (z|y)
−

fZ,X|Y (z, x|y)
fX|Y (x|y)fZ|Y (z|y)

)
dx|ydz|y

=

∫ ∫
fX|Y (x|y)fZ|Y (z|y)

(
f 2
Z,X|Y (z, x|y)

f 2
X|Y (x|y)f 2

Z|Y (z|y)
− 2

fZ,X|Y (z, x|y)
fX|Y (x|y)fZ|Y (z|y)

+ 1

)
dx|ydz|y

=

∫ ∫
fX|Y (x|y)fZ|Y (z|y)

(
fZ,X|Y (z, x|y)

fX|Y (x|y)fZ|Y (z|y)
− 1

)2

dx|ydz|y ≥ 0,

(A.3)

with equality if and only if fZ,X|Y (z,x|y)
fX|Y (x|y)fZ|Y (z|y) = 1 for any (z,x|y). In the fourth step we completed

the square by using the fact that the integral over the whole support of pdf is 1. Finally, t ≥ 0
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follows naturally from the integrand is non-negative.

A.3 Proof for lemma2

Suppose we denote the asymptotic distribution of T̃ ′n in such a way that:

√
n
T̃ ′n(h)− t

σ

d−→ N(0, 1), (A.4)

with appropriate variance σ. To prove lemma 2, it is sufficient to show that

√
n
T ′n(h)− t

σ

d−→ N(0, 1),

because the two limiting distributions imply that
√
n(T ′n − T̃ ′n) = oP (1).

To construct the equivalence of the limiting distributions, we need to prove that if v̂(.)
consistent, the limiting distribution in eq. (A.4) remains for T ′n. Lemma 1 guarantees the
estimate of a density is consistent. For a consistent density estimate, it can always be expressed
as the corresponding true density plus an extra error term which vanishes in limit, for example
f̂X,Y (xi, yi) = fX,Y (xi, yi) + εX,Y (xi, yi). Following this manner and ignoring the subscripts for
simplicity, we can show that an estimated v̂(.) differs from v(.) only in the higher order:

1

v̂(xi, yi, zi)

=
1

f̂(xi, yi)f̂(yi, zi)

=
1

(f(xi, yi) + ε(xi, yi))(f(yi, zi) + ε(yi, zi))

=
1

f(xi, yi)f(yi, zi) + ε(xi, yi)f(yi, zi) + ε(yi, zi)f(xi, yi) + ε(xi, yi)ε(yi, zi)

=
1

f(xi, yi)f(yi, zi)

1(
1 + ε(xi,yi)f(yi,zi)+ε(yi,zi)f(xi,yi)+ε(xi,yi)ε(yi,zi)

f(xi,yi)f(yi,zi)

)
=

1

f(xi, yi)f(yi, zi)

(
1− ε(xi, yi)f(yi, zi) + ε(yi, zi)f(xi, yi) + ε(xi, yi)ε(yi, zi)

f(xi, yi)f(yi, zi)
+ h.o.t

)
=

1

f(xi, yi)f(yi, zi)
+ h.o.t

=
1

v(xi, yi, zi)
+ h.o.t,

(A.5)

where the last equation but one uses the approximation 1
(1+x)

≈ 1 − x + O(x2), and in the
last step we make a simplification by omitting higher order terms. Clearly, if eq. (A.4) holds,
asymptotically it makes no difference if v(.) is replaced by v̂(.).
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A.4 Proof for the Asymptotic distribution of Modified DP Statistic

Applying lemma 2, we only need to prove that

√
n
T̃ ′n(h)− t

Sn

d−→ N(0, 1).

According to the definition, T̃ ′n(h) is a re-scaled DP statistic with the scaling factor (1/v(.)) . In
a similar manner of Theorem 1 in Diks and Panchenko (2006), we could obtain the asymptotic
behavior of T̃ ′n(h) by making use of the optimal mean squared error (MSE) bandwidth developed
by Powell and Stoker (1996) for point estimator. The test statistic T̃ ′n(h) can be expressed
by an order three U -statistic K̃(Wi,Wj,Wk) by symmetrization with respect to the indices
i, j, k. Further define two kernel functions as K̃1(wi) = E[K̃(wi,Wj,Wk)] and K̃2(wi, wj) =

E[K̃(wi, wj,Wk)], we assume the three mild conditions adapting from Powell and Stoker (1996)
for controlling the rate of convergence of the point-wise bias as well as the serial expansions of
the kernel functions:

K̃1(wi, h)− lim
h→0

K̃1(wi, h) = s(wi)h
α + s∗(wi, h), α > 0

E[(K̃2(Wi,Wj))
2] = q2h

−γ + q∗2(h), γ > 0

E[(K̃(Wi,Wj,Wk))
2] = q3h

−δ + q∗3(h), δ > 0

(A.6)

where all remainder terms are of higher orders, i.e. E||s∗(Wi, h)||2 = oP (h
2α), q∗2(h) = oP (h

−γ)

and q∗3(h) = oP (h
−δ) and the convergence rate is controlled by the parameters α, γ and δ.

Conditions eq. (A.6) are satisfied if α is set as the order of kernel function K(.), in our case
for Gaussian kernel which is 2, and γ, δ depend on the dimensions of the variables under
consideration in such a way: γ = dX + dY + dZ and δ = dX + 2dY + dZ . Define C0 =

2cov[limh→0 K̃1(Wi, h), s(Wi)], we can show the mean squared error of DP statistic as a function
of sample size dependent bandwidth:

MSE[Tn(h)] = (E[s(Wi)])
2h2α+

9

n
C0h

α+
9

n
Var

[
lim
h→0

K̃1(Wi, h)
]
+
18

n2
q2h
−γ+

6

n3
q3h
−δ+h.o.t

(A.7)

The scaling factor (1/v(.)) in T̃ ′n(h) would enter the MSE in eq. (A.7) by mainly changing the
variance term. For other bandwidth-dependent terms, (1/v(.)) just re-scale their coefficients
without affecting the convergence rates. Thus, we may still let all those h-dependent terms to
be oP (n−1) to make the 9Var

[
limh→0 K̃1(Wi, h)

]
dominant as in Diks and Panchenko (2006).

Therefore, adopting a sample size n-dependent bandwidth h = Cnβ, with C, β > 0, one finds

√
n
T̃ ′n(h)− t

Sn

d−→ N(0, 1) if
1

2α
< β <

1

dX + dY + dZ
(A.8)
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where S2
n is a consistent estimator of the asymptotic variance 9Var

[
limh→0 K̃1(Wi, h)

]
. In our

bivariate case, α = 2 and dX + dY + dZ = 3, and we would have β ∈ (1/4, 1/3).

A.5 Proof for Non-Degeneracy of the Limiting Distribution of the

Modified DP Test Statistic

To show the asymptotic normality in Thm. 3 is a non-degenerate distribution, it is sufficient to
prove that with the plug-in weighting function v(·), the modified DP test U-statistic kernel is
not degenerated.
The symmetrized U-statistic representation of the modified DP test statistic defined in

eq. (14) is given by

K(w1, w2, w3) = [(κXY Z(w1 − w2)κY (w1 − w3)− κXY (w1 − w2)κY Z(w1 − w3)) /v(w1)] /6

+ permutations of w1, w2, w3,

(A.9)

where κ is a (bandwidth h dependent) density estimation kernel function, and wi = (xi, yi, zi)
′,

i ∈ {1, 2, 3}.
Let r1 be the Hájek projection

r1(w1;h) = E(K(w1,W2,W3))

of the U-statistic kernel.
Define

r1(w1) = lim
h→0

r1(w1;h).

The U-statistic is degenerate (in that the variance is of higher order than in the derivation of
the modified DP test statistic) if r1(w1) is constant as a function of w1 = (x1, y1, z1)

′. Combining
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the above equations and eq. (A.9), we obtain

r1(w1;h) =E [(κXY Z(w1 −W2)κY (w1 −W3)− κXY (w1 −W2)κY Z(w1 −W3)) /v(w1)] /6

+ E [(κXY Z(W2 − w1)κY (W2 −W3)− κXY (W2 − w1)κY Z(W2 −W3)) /v(w1)] /6

+ E [(κXY Z(W3 −W2)κY (W3 − w1)− κXY (W3 −W2)κY Z(W3 − w1)) /v(w1)] /6

+ E [(κXY Z(w1 −W3)κY (w1 −W2)− κXY (w1 −W3)κY Z(w1 −W2)) /v(w1)] /6

+ E [(κXY Z(W3 − w1)κY (W3 −W2)− κXY (W3 − w1)κY Z(W3 −W2)) /v(w1)] /6

+ E [(κXY Z(W3 −W2)κY (W3 − w1)− κXY (W3 −W2)κY Z(W3 − w1)) /v(w1)] /6

=E [(κXY Z(w1 −W2)κY (w1 −W3)− κXY (w1 −W2)κY Z(w1 −W3)) /v(w1)] /3

+ E [(κXY Z(W2 − w1)κY (W2 −W3)− κXY (W2 − w1)κY Z(W2 −W3)) /v(w1)] /3

+ E [(κXY Z(W3 −W2)κY (W3 − w1)− κXY (W3 −W2)κY Z(W3 − w1)) /v(w1)] /3

≡E1(w1;h)/3 + E2(w1;h)/3 + E3(w1;h)/3,

(A.10)

where in the last step we used the fact that the terms with W2 and W3 swapped are identical.
We next consider

r1(w1) = lim
h→0

r1(w1;h)

= lim
h→0

E1(w1;h)/3 + lim
h→0

E2(w1;h)/3 + lim
h→0

E3(w1;h)/3

≡ E1(w1)/3 + E2(w1)/3 + E3(w1)/3.

For E1(w1) we find

E1(w1) = lim
h→0

E [(κXY Z(w1 −W2)κY (w1 −W3)− κXY (w1 −W2)κY Z(w1 −W3)) /v(w1)]

= lim
h→0

∫ ∫
fW (w2)fW (w3) [(κXY Z(w1 −W2)κY (w1 −W3)

−κXY (w1 −W2)κY Z(w1 −W3)) /v(w1)] dw2dw3

=
1

v(w1)

∫ ∫
fXY Z(w2)fXY Z(w3) (δXY Z(w1 − w2)δY (w1 − w3)

−δXY (w1 − w2)δY Z(w1 − w3)) dw2dw3

=
1

v(w1)
(fXY Z(w1)fY (w1)− fXY (w1)fY Z(w1)) ,

(A.11)

where in the third step, δ(·) is the Dirac delta function, also referred to as the unit impulse
symbol. Using convolution, we have the last equality. Under H0 for all w1 in the support of
W , eq. (A.11) is zero by construction.
However, the other terms, E2(w1) and E3(w1), need not be constant even under H0. For
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instance,

E2(w1, h) =E [(κXY Z(W2 − w1)κY (W2 −W3)− κXY (W2 − w1)κY Z(W2 −W3)) /v(w1)]

E2(w1) = lim
h→0

E [(κXY Z(W2 − w1)κY (W2 −W3)− κXY (W2 − w1)κY Z(W2 −W3)) /v(w1)]

= lim
h→0

E [(κXY Z(W2 − w1)fY (W2)− κXY (W2 − w1)fY Z(W2)) /v(w1)]

= lim
h→0

∫
fXY Z(w2)κXY Z(w2 − w1)fY (w2)/v(w1) dw2

− lim
h→0

∫
fXY Z(w2)κXY (w2 − w1)fY Z(w2)/v(w1) dw2

=

∫
fXY Z(w2)δXY Z(w2 − w1)fY (w2)/v(w1) dw2

− lim
h→0

∫
fXY Z(w2)κXY (w2 − w1)fY Z(w2)/v(w1) dw2

=fXY Z(w1)fY (w1)/v(w1)− lim
h→0

∫
fXY Z(w2)κXY (w2 − w1)fY Z(w2)/v(w1) dw2

=fXY Z(w1)fY (w1)/v(w1)

− lim
h→0

∫
fXY Z(x2, y2, z2)κXY (x2 − x1, y2 − y1)fY Z(y2, z2)/v(w1) dx2dy2dz2

=fXY Z(w1)fY (w1)/v(w1)

− 1

v(w1)

∫
fXY Z(x2, y2, z2)δXY (x2 − x1, y2 − y1)fY Z(y2, z2) dx2dy2dz2

=
1

v(w1)
(fXY Z(w1)fY (w1)−

∫
fXY Z(x1, y1, z2)fY Z(y1, z2) dz2).

(A.12)

Since the last term in the bracket does not depend on z1, while the first typically depends on
x1, y1 and z1 under H0, E2(w1) typically isn’t constant. A similar argument also can be used to
show that E3(w1) is not constant (and neither is E2(w1)+E3(w1), because E3(w1) is a function
of (y1, z1) only, while E2(w1) also depends on x1 typically).
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For completeness, E3(w1, h) and E3(w1) are given below:

E3(w1, h) =E [(κXY Z(W3 −W2)κY (W3 − w1)− κXY (W3 −W2)κY Z(W3 − w1)) /v(w1)]

E3(w1) = lim
h→0

E [(κXY Z(W3 −W2)κY (W3 − w1)− κXY (W3 −W2)κY Z(W3 − w1)) /v(w1)]

= lim
h→0

∫
fXY Z(w3)κY (w3 − w1)fXY Z(w3)/v(w1) dw3

− lim
h→0

∫
fXY (w3)κY Z(w3 − w1)fXY Z(w3)/v(w1) dw3

= lim
h→0

∫
fXY Z(x3, y3, z3)κY (y3 − y1)fXY Z(x3, y3, z3)/v(w1) dx3dy3dz3

− lim
h→0

∫
fXY (x3, y3)κY Z(y3 − y1, z3 − z1)fXY Z(x3, y3, z3)/v(w1) dx3dy3dz3

=
1

v(w1)
(

∫
fXY Z(x3, y1, z3)fXY Z(x3, y1, z3) dx3dz3 −

∫
fXY (x3, y1)fXY Z(x3, y1, z1) dx3)

(A.13)

Because E2(w1) and E3(w1) are not constant, r1(w1) cannot be constant, hence the U-statistic
defined in eq. (14) is non-degenerate.
To illustrate that E2(w1) and E3(w1) are typically not constant, consider the example where

W ∼ N(0, I3). In this case H0 holds, so we have E1 = 0, while

v(w1) = fX,Y (x1, y1)fY,Z(y1, z1) =

(
1√
2π

)4

e−(x
2
1+2y21+z

2
1)/2,

plug into eqs. (A.12) and (A.13) we have

E2(w1) =

[(
1√
2π

)4

e−(x
2
1+2y21+z

2
1)/2 −

(
1√
2π

)5 ∫
e−(x

2
1+2y21+2z22)/2 dz2

]
/v(w1)

=

[(
1√
2π

)4

e−(x
2
1+2y21+z

2
1)/2 −

(
1√
2π

)5

e−(x
2
1+2y21)/2

∫
e−2z

2
2/2 dz2

]
/v(w1)

=

[(
1√
2π

)4

e−(x
2
1+2y21+z

2
1)/2 −

(
1√
2π

)4
1√
2
e−(x

2
1+2y21)/2

]
/v(w1)

=

[(
1√
2π

)4(
e−z

2
1/2 − 1√

2

)
e−(x

2
1+2y21)/2

]
/v(w1)

=

(
e−z

2
1/2 − 1√

2

)
ez

2
1/2

=1− 1√
2
ez

2
1/2
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E3(w1) =

[∫
f 2
XY Z(x, y1, z) dxdz −

∫
fXY (x, y1)fXY Z(x, y1, z1) dx

]
/v(w1)

=

[(
1√
2π

)6 ∫ (
e−(x

2+y21+z
2)/2
)2

dxdz −
(

1√
2π

)5 ∫
e−(2x

2+2y21+z
2
1)/2 dx

]
/v(w1)

=

[(
1√
2π

)6

e−y
2
1

∫
e−(x

2+z2) dxdz −
(

1√
2π

)5

e−(2y
2
1+z

2
1)/2

∫
e−x

2

dx

]
/v(w1)

=

[(
1√
2π

)6

e−y
2
1π −

(
1√
2π

)5

e−(2y
2
1+z

2
1)/2
√
π

]
/v(w1)

=

[(
1√
2

)5
1

π2

(
1√
2
e−y

2
1 − e−y

2
1e−z

2
1/2

)]
/v(w1)

=

[(
1√
2

)5
1

π2
e−y

2
1

(
1√
2
− e−z

2
1/2

)]
/v(w1)

=
1√
2

(
1√
2
− e−z

2
1/2

)
e(x

2
1+z

2
1)/2,

clearly both E2(w1) and E3(w1) are not constant.

A.6 Optimal Bandwidth for Modified DP Test

The optimal bandwidth should balance the squared bias and variance of the test statistic, given
in eq. (A.7). Particularly, the first and fourth terms are leading, and all reminders are of higher
order. The optimal bandwidth should have a similar form as the one for DP test in eq. (15).
In fact, the difference between two bandwidth is up to a scalar as a result of replacing square

kernel by Gaussian one. Assuming the product kernel in eq. (6), the bias and variance of the
density estimator are described following Wand and Jones (1994) and Hansen (2009),

Bias(f̂(x)) =
µν(κ)

ν!

k∑
j=1

∂ν

∂xνj
f(x)hνj + oP (h

ν
1 + ...+ hνk),

Var(f̂(x)) =
f(x)R(κ)k

(n− 1)h1h2...hk
+ oP ((n− 1)h1h2...hk),

(A.14)

where µν(κ) =
∫∞
−∞ t

νκ(t)dt is the νth moment of a kernel function, with ν the corresponding
order of the kernel. For Gaussian kernel κ(.), ν = 2. The function R(κ) =

∫∞
−∞ κ(t)

2dt is the
so called roughness function of the kernel. For a k-dimensional vector, the multivariate density
estimation is carried out with a bandwidth vector H = (h1, ..., hk)

′. It is not difficult to see
that E[s(W )] and q2 defined in eq. (A.6) depend on the used kernel function trough functions
µν(κ) and R(κ).
Using the superscript ‘G’ and ‘SQ’ to denote Gaussian and square kernels, Hansen (2009)
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shows

µSQν (κ) = 1/3, RSQ(κ) = 1/2,

µGν (κ) = 1, RG(κ) = 1/2
√
π.

(A.15)

In this research, when we substitute the square kernel by Gaussian kernel, the squared bias-
related E[s(W )] and the variance-related q2 will change correspondingly. Directly applying
eq. (A.15), we have qG(κ)2 = 3qSQ(κ)2, RG(κ) = RSQ(κ)/

√
π. Plug this into eq. (15) and do

some calculations, one may find

h∗ ≈ 0.6hDP . (A.16)
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Figure 1: Power for the one-sided DP test for the artificial process {Xt, Yt, Zt} given q = 0
at nominal size, from the bottom to the top, 5%, 10% and 15%, respectively, based on 10,000
independent replications. The sample size runs from 100 to 20,000.
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Figure 2: Size-power plots for the one-sided DP test for the artificial process {Xt, Yt, Zt} given
q = 0, based on 10,000 independent replications. Each subplot draws the actual power against
the nominal size for different sample sizes, ranging from 100 to 10,000. The solid curve repres-
ents the actual power and the red dash line indicate the 45-degree line, also been treated as the
theoretical size of a test.
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Figure 3: Size-power plots for the one-sided modified DP test for the artificial process
{Xt, Yt, Zt} given q = 0, based on 10,000 independent replications. Each subplot draws the
actual power against the nominal size for different sample sizes, ranging from 100 to 10,000.
The solid curve represents the actual power and the red dash line indicate the 45-degree line,
also been treated as the theoretical size of a test.

35



0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Nominal Size

A
ct
ua

lS
iz
e

(a) Size-Size Plot, a=0.1
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(b) Size-Power Plot, a=0.1
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(c) Size-Size Plot, a=0.4
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Figure 4: Size-size and size-power plots of Granger non-causality tests, based on 5,000 replic-
ations. The DGP is bivariate linear VAR as in eq. (18), with Y affecting X. The left (right)
column shows observed rejection rates under the null(alternative), blue color stands for DP test
while red line indicates modified DP test. Real line and dash line present results with sample
size n = 500 and n = 5000, respectively.
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(a) Size-Size Plot, a=0.1
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(b) Size-Power Plot, a=0.1
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(c) Size-Size Plot, a=0.4
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Figure 5: Size-size and size-power plots of Granger non-causality tests, based on 5,000 replic-
ations. The DGP is bivariate Non-linear VAR as in eq. (19), with Y affecting X. The left
(right) column shows observed rejection rates under the null(alternative), blue color stands for
DP test while red line indicates modified DP test. Real line and dash line present results with
sample size n = 500 and n = 5000, respectively.
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(a) Size-Size Plot, a=0.1
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(b) Size-Power Plot, a=0.1
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(c) Size-Size Plot, a=0.4
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Figure 6: Size-size and size-power plots of Granger non-causality tests, based on 5,000 replica-
tions. The DGP is bivariate ARCH as in eq. (20), with Y affecting X. The left (right) column
shows observed rejection rates under the null(alternative), blue color stands for DP test while
red line indicates modified DP test. Real line and dash line present results with sample size
n = 500 and n = 5000, respectively.
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Figure 7: Autocorrelations of Returns, Absolute Returns and Square Returns, up to 200 lags.
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Figure 8: Autocorrelation of Returns, Absolute Returns and Square Returns after MA(1)
Component removed, up to 200 lags.
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Figure 9: Autocorrelation of Returns, Absolute Returns and Square Returns after MA(1) and
GARCH Component removed, up to 200 lags.
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Figure 10: Graphic representation of pairwise causalities on MA and seasonal component
filtered residuals, as well as EGARCH filtered residuals. All "→" in the graph indicate a
significant directional causality at 5% level.
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Table 1: Observed Size and Power of the T ′n(h) test for bivariate ARCH process eq. (17)
n 200 500 1000 2000 5000
h 1.0563 0.8130 0.6670 0.5471 0.4211

a = 0.1
Size 0.0020 0.0016 0.0036 0.0016 0.0048
Power 0.0032 0.0128 0.0288 0.0792 0.4000

a = 0.2
Size 0.0020 0.0008 0.0032 0.0016 0.0048
Power 0.0208 0.0932 0.2824 0.7292 0.9992

a = 0.3
Size 0.0020 0.0012 0.0028 0.0032 0.0044
Power 0.0816 0.3668 0.7916 0.9972 1.0000

a = 0.4
Size 0.0020 0.0016 0.0032 0.0028 0.0084
Power 0.1928 0.6968 0.9848 1.0000 1.0000

Note: Table 1 presents the empirical size and power of modified DP test for process eq. (17) for different sample
sizes and parameter a. The values represent observed rejection rates over 5000 realizations for nominal size
0.05.

Table 2: Test Statistics for the S&P500 returns and volume data
Volume → Return

Linear DP MDP
h = 1.5 h = 0.6 h = 1.5 h = 0.6

Raw data 0.8503 2.8769∗∗ 2.9952∗∗ 3.8526∗∗ 2.7929∗∗
VAR residuals - 3.6880∗∗ 3.5683∗∗ 4.2696∗∗ 3.5769∗∗

EGARCH residuals - 1.4403 1.2347 1.2672 2.4143∗∗

Return → Volume

Linear DP MDP
h = 1.5 h = 0.6 h = 1.5 h = 0.6

Raw data 18.8302∗∗ 4.9309∗∗ 4.5138∗∗ 4.9253∗∗ 3.8359∗∗
VAR residuals - 5.2732∗∗ 5.1692∗∗ 5.2239∗∗ 3.7835∗∗

EGARCH residuals - 3.0067∗∗ 3.1214∗∗ 3.1176∗∗ 3.5101∗∗
Note: Table 2 presents the test statistics for the Granger causality between S&P500 returns and volume data.
Results are shown for the linear Granger test, the DP test and the modified DP test. Bandwidth values are .
The asterisks indicate significance at the 5% (∗) and 1% (∗∗) levels.

Table 3: Test Statistics for the NASDAQ returns and volume data
Volume → Return

Linear DP MDP
h = 1.5 h = 0.6 h = 1.5 h = 0.6

Raw data 0.0979 3.5894∗∗ 3.3751∗∗ 4.1311∗∗ 3.3532∗∗
VAR residuals - 4.3932∗∗ 4.2931∗∗ 5.3026∗∗ 3.7300∗∗

EGARCH residuals - 0.8282 0.5604 1.0430 1.2531
Return → Volume

Linear DP MDP
h = 1.5 h = 0.6 h = 1.5 h = 0.6

Raw data 11.1736∗∗ 5.1100∗∗ 5.0201∗∗ 4.9980∗∗ 4.5935∗∗
VAR residuals - 5.6293∗∗ 6.4855∗∗ 5.5750∗∗ 5.0233∗∗

EGARCH residuals - 3.5959∗∗ 4.0693∗∗ 4.0745∗∗ 4.4522∗∗
Note: Table 3 presents the test statistics for the Granger causality between NASDAQ returns and volume data.
Results are shown for the linear Granger test, the DP test and the modified DP test. Bandwidth values are .
The asterisks indicate significance at the 5% (∗) and 1% (∗∗) levels.
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Table 4: Test Statistics for the DJIA returns and volume data
Volume → Return

Linear DP MDP
h = 1.5 h = 0.6 h = 1.5 h = 0.6

Raw data 0.9761 1.2557 1.8384∗ 1.9450∗ 2.2697∗
VAR residuals - 1.8711∗ 2.0951∗ 2.0998∗ 2.7207∗∗

EGARCH residuals - 1.4543 1.4317 1.0566 1.4801
Return → Volume

Linear DP MDP
h = 1.5 h = 0.6 h = 1.5 h = 0.6

Raw data 17.0779∗∗ 2.3076∗ 1.7236∗ 2.4972∗∗ 3.3222∗∗
VAR residuals - 2.3086∗ 2.0454∗ 2.6734∗∗ 3.1056∗∗

EGARCH residuals - 0.8033 1.0589 1.8989∗ 3.0707∗∗
Note: Table 4 presents the test statistics for the Granger causality between DJIA returns and volume data.
Results are shown for the linear Granger test, the DP test and the modified DP test. Bandwidth values are .
The asterisks indicate significance at the 5% (∗) and 1% (∗∗) levels.

Table 5: Test Statistics for the Pairwise Granger Causality on Raw Exchange Returns
Pair MA residuals EGARCH residuals

DP MDP DP MDP
JPY AUD 4.0180∗∗ 3.0086∗∗ 1.9843∗ 1.2611
JPY EUR 4.4724∗∗ 3.7586∗∗ 0.9336 0.5734
JPY GBP 4.4096∗∗ 3.9775∗∗ 0.4305 0.3480
JPY CHF 4.3236∗∗ 3.9867∗∗ 1.6542∗ 1.5474
AUD JPY 4.4872∗∗ 3.6505∗∗ 2.0162∗ 1.4173
AUD EUR 4.5398∗∗ 3.5291∗∗ 2.7414∗∗ 1.9737∗
AUD GBP 3.9936∗∗ 2.8616∗∗ 1.6532∗ 0.6208
AUD CHF 3.2458∗∗ 3.2727∗∗ 1.5546 1.5006
EUR JPY 4.0257∗∗ 3.2913∗∗ 1.1139 0.3133
EUR AUD 3.7456∗∗ 3.1796∗∗ 1.5543 1.0551
EUR GBP 5.3053∗∗ 4.3236∗∗ 3.0613∗∗ 2.2103∗
EUR CHF 5.5101∗∗ 4.6634∗∗ 3.8299∗∗ 3.5006∗∗
GBP JPY 4.2506∗∗ 3.4310∗∗ 0.3216 0.0284
GBP AUD 4.7248∗∗ 4.0036∗∗ 2.3418∗∗ 1.9653∗
GBP EUR 4.7092∗∗ 3.9164∗∗ 1.3648 0.5487
GBP CHF 2.7094∗∗ 2.2224∗ 2.0109∗ 1.6580∗
CHF JPY 4.0033∗∗ 3.4545∗∗ 0.9972 0.3293
CHF AUD 3.3506∗∗ 2.5622∗∗ 0.8823 0.0981
CHF EUR 3.8227∗∗ 2.6958∗∗ 1.6378 0.2864
CHF GBP 3.6522∗∗ 3.0242∗∗ 1.8381∗ 1.5102

Note: Table 5 presents the statistics for pairwise Granger non-causality tests on high-frequency returns of
five major currencies. The data are first cleaned by MA(1) component and seasonal component, and then
standardized by EGARCH variance. Results are shown both for the DP test and the modified DP test with
bandwidth h = 0.2877. The asterisks indicate significance at the 5% (∗) and 1% (∗∗) levels.
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