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Abstract

We present results from the first laboratory experiment on the seminal
heuristic switching model introduced by ??. Subjects choose between two
alternatives, a sophisticated and stabilizing, but costly, heuristic, and a
destabilizing, but cheap, heuristic, and are paid according to the perfor-
mance of the chosen heuristic. Aggregate choices determine the evolution
of a state variable and, consequently, the performance of both heuristics.
Theoretically, an increase in the costs for the stabilizing heuristic generates
instability and leads to endogenous fluctuations in both the state variable
and the fraction of agents using that heuristic.

We vary the costs of the stabilizing heuristic in the experiment and find
that the predictions of the heuristic switching model are partially confirmed.
For low costs the dynamics are stable. For high costs, the dynamics initially
are unstable and exhibit the type of bubbles and crashes emblematic for the
heuristic switching model. However, over time the pattern of bubbles and
crashes disappears and the dynamics become more stable. We estimate a
standard discrete choice model on aggregate choice data and observe that
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subjects have a tendency to become less sensitive to payoff differences when
the environment is less stable, which has important implications for the
application of heuristic switching models.

Keywords: Heuristic switching model, Heterogeneous agent models, Discrete choice,

Experiments.
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1 Introduction

In the last couple of decades heterogeneous agents models have become increasingly

popular as a description of turbulence and volatility on financial markets. In

these models different types of traders coexist on financial markets, as motivated

by early empirical and theoretical studies. ?, for example, distinguish between

fundamentalists, who use in-depth analysis of firms and their market environment

to determine the fundamental value of an asset and believe that prices tend to

revert back to this fundamental value, and chartists, who use technical analysis

to identify patterns in prices and extrapolate those when predicting future prices

(also see ?). ? and ? show that the interaction between these different types of

traders may lead to the emergence of endogenous fluctuations in asset prices in

an otherwise stationary and deterministic environment.

An important class of heterogeneous agents models assumes that there is a large

population of traders that adaptively switch between some archetypal types of

behavior, or heuristics, on the basis of the relative performance of these heuristics,

see, e.g., ??, ?? and ??. These models, often referred to as heuristic switching

models, have been successful in describing stylized facts of financial markets, such

as bubbles and crashes in asset prices, excess volatility, volatility clustering, and

fat tails, and have become quite popular as a result. The most common approach

of modeling switching between heuristics in this literature is through the so-called

discrete choice model. A crucial role in that model is played by the Intensity of

Choice (IoC) parameter, which measures how sensitive traders are with respect

to differences in performance. ?? showed, and follow-up research confirmed,

that heuristic switching models generate excess volatility and many other stylized

facts of financial markets when the IoC parameter is sufficiently large. The IoC

parameter is thus pivotal for the dynamic properties of the heuristic switching

models, and hence for their success in explaining financial market data and for the

validity of policy implications.

In this paper we present the results of a laboratory experiment that is designed

to test the predictions of the heuristic switching model and to estimate the IoC

parameter from aggregate decisions of the experimental subjects. In particular,

we construct a decision environment which is a stylized version of the framework

laid down in the seminal work by ??. This framework has served as a benchmark
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heuristic switching model in the literature1 but thus far its basic assumptions and

implications have never been tested in a controlled laboratory experiment.

In our experiment we let subjects choose between a costly stabilizing heuristic

and a cheap destabilizing heuristic. Payoffs associated with the choices depend

upon the distribution of subjects over the heuristics. An important prediction of

the heuristic switching model is that if costs for the stabilizing heuristic increase

(relative to the costs for the destabilizing heuristic), the dynamics of the state

variable (e.g., the price) and the distribution of agents over heuristics become

unstable and complicated endogenous fluctuations may emerge. In our experiment

we indeed find that an increase in costs for the stabilizing heuristic initially leads

to the type of bubbles and crashes that are typical for the standard heuristic

switching model. However, for the case of high costs we also find that, over time,

the subjects adapt their behavior such that the dynamics becomes more stable

and is consistent with a steady state of the model (although the dynamics are still

much more volatile than in the low cost case). In particular, the estimated values

of the intensity of choice parameter are much smaller for high costs than for low

costs, which suggests that the characteristics of the economic environment are an

important determinant of the value of this parameter. This finding is important

because in the standard heuristic switching model the intensity of choice parameter

is assumed to be exogenously given.

Our paper contributes to a growing empirical literature that tries to estimate

the heuristic switching model from market or survey data. ?, for example, estimate

the IoC parameter on mutual fund allocations decisions, whereas ? uses survey

data to estimate a discrete choice model with switching between three heuristics.

? and ? use U.S. stock price data to estimate a heuristic switching model with a

fundamentalist heuristic and a trend-following or a chartist heuristic, respectively.

Survey data of expectations in foreign exchange markets are used in ?. Finally, ?

estimate a discrete choice model with switching between fundamentalists and ran-

dom walk believers, using U.S. macroeconomic data. Although these contributions

provide compelling evidence that the heuristic switching model performs well as

a description of market behavior for different types of data, the drawback is that

the IoC parameter in these models typically needs to be jointly estimated with

1According to Google Scholar ? and ? together have been cited more than 3100 times as of
December 5, 2017. Examples of theoretical contributions that build upon their framework can
be found in ?, ?, ?, ?, ? and ?, among many others. A number of papers use the framework to
study the effect of various financial market policies, such as the imposition of Tobin transaction
taxes (?), increasing the number of financial derivatives (?) and restricting short selling (?).
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other behavioral parameters (e.g., the heuristics are often parametrized as well).

Several studies, including ?, find that the estimated value of the IoC parameter is

not significant. Studies that produce significant estimates of the IoC report very

different values, depending on the specification of the heuristics.2 Finally, there

is a large variation in the estimated value of the IoC parameter between studies.3

This uncertainty regarding the relevant range of values for this parameter, which

plays such a crucial role in the dynamics of heuristic switching models, may deter

policy-makers from using those models.

Laboratory experiments have the advantage that the experimenters can control

both the market environment in which the subjects operate as well as the infor-

mation these subjects have about that market environment. Therefore laboratory

experiments can be used to obtain relatively clean data concerning the relation-

ships under study. So-called ‘Learning to Forecast’ experiments (see, e.g., ?, ?

and ?, and ? for an overview) have been used to estimate different forecasting

heuristics that subjects typically use. An important feature of these Learning

to Forecast experiments is that they take into account the self-referential charac-

teristics of dynamic market environments. That is, expectations about the future

value of an economic variable feed back into the actual realization of that variable,

and thereby in part determine the behavior of that variable. This is in contrast to

earlier experiments on expectation formation where participants have to predict

an exogenously generated time series (see e.g., ?, ? and ?).

Experiments can also be used to better understand how people exactly switch

between different heuristics. A first step in that direction, which can be seen

as complementary to the Learning to Forecast experiments where the heuristics

themselves are estimated, is taken in the experiment conducted in ?. In that ex-

periment subjects have to choose between different alternatives, where the payoffs

associated with the alternatives are exogenously generated. The aggregate choice

data are used to estimate different versions of the discrete choice model. The ex-

2For instance, ? use the risk adjusted payoffs of investors and estimate the IoC parameter
as 0.9, 1.9, and 6.53 for three different values of the risk aversion parameter. ? report values
of the IoC parameter ranging from 1.99 to 9.26, depending on the forecasting rules used by
fundamentalists.

3Because the IoC parameter is not a scale-free parameter the variation in the estimated
values of this parameter may be partly due to the differences in (average) performance levels.
This conjecture is, however, difficult to verify in empirical studies as performance levels of the
different heuristics are rarely reported. Recently, ? proposed a model where switching is based
on relative, instead of absolute, profit differences. This opens up the possibility to compare the
estimated IoC for various asset classes, such as metals, real estate prices, and foreign exchange
markets, directly. The estimates of the IoC in ? still differ across markets, however.
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periment presented in the current paper differs from the one in ? in that payoffs

are endogenously generated in this new experiment, and determined by the aggre-

gate choices of the subjects. This setting therefore represents the typical heuristic

switching model better.

The remainder of the paper is organized as follows. We start by introducing

a stylized version of the heuristic switching model in Section 2. This model is a

simplified version of the original Brock-Hommes model and we use it as a basis for

our experimental environment. In Section 3 we discuss the experimental design

and in Section 4 we formulate the hypotheses to be tested. In Section 5 we

present the experimental results. We fit a simple discrete choice model to subjects’

aggregate choices and argue that the IoC parameter changes over time in response

to the decision environment. In addition, we show that our results are robust to

increasing the number of subjects in the experimental groups and to increasing

the number of decision periods. Concluding remarks are given in Section 6.

2 A stylized heuristic switching model

This section introduces the stylized heuristic switching model that will be used in

the laboratory experiment presented in this paper. Some more background on the

heuristic switching model and a description of the main mechanism that leads to

complicated dynamics in that model are given in Section 2.1. We subsequently

describe the stylized heuristic switching model that we use in this paper and

which consists of two parts: the dynamics of the state variable, which we discuss

in Section 2.2, and the discrete choice model that describes switching between

heuristics, which we discuss in Section 2.3.

2.1 Complex dynamics from the interaction of heuristics

The heuristic switching model was introduced in ?. They consider a cobweb

market where a large number of producers have to decide how much to supply

of a (non-storable) commodity that takes one period to produce. The realized

market price for the commodity will be the price for which consumer demand

equals the aggregate supply of the producers, where the latter is determined by

the individual price expectations of the producers. In ? it is assumed that there
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are two forecasting heuristics available to the suppliers: either naive expectations –

where a producer uses the last observed price as his prediction for the next price, or

rational expectations – where a producer knows the underlying market equilibrium

condition, as well as the distribution of producers over the different heuristics, and

uses this information to compute the market clearing price in the current period.

Whereas the naive expectations heuristic uses very little (and publicly available)

information, applying the rational expectations heuristic is more demanding. It

requires substantially more information as well as the cognitive effort to process

this information correctly. It therefore seems reasonable to assume that using the

rational expectations heuristic comes at strictly higher (information) costs than

using the naive expectations heuristic.

Every period producers decide which forecasting heuristic to use on the basis of

relative past performance (after information costs have been deducted). It turns

out that complicated dynamics may emerge if the sensitivity of producers with

respect to the profit difference (i.e., producers’ intensity of choice) of the heuris-

tics is sufficiently high. The mechanism underlying these complicated dynamics

can be described as follows. When the price is close to its steady state level, the

forecasting heuristics give comparable predictions and, given their relative cost,

producers have the incentive to choose the naive expectations heuristic. How-

ever, when almost all producers use naive expectations, the cobweb dynamics are

unstable and market prices start to oscillate (see, e.g., ?). As a consequence, fore-

casting errors under naive expectations increase and producers tend to switch to

the more profitable rational expectations heuristic. When enough producers use

the rational expectations heuristic, prices converge to their steady state value and

forecasting errors of both heuristics are similar again. As the rational expectations

heuristic still comes with a cost, producers switch back to the naive expectations

heuristic and the whole cycle repeats.

This type of mechanism, inducing complicated dynamics, works in many other

market environments as well. Competition between fundamentalists and chartists

in financial markets provides the most celebrated application, see, e.g., ?, ? and

? for early examples and ? for an overview. It is important to note that the

mechanism is qualitatively robust to changes in the set of heuristics, to the type

of market institution (e.g., Walrasian equilibrium clearing, a market maker that

adjusts prices, or continuous double auctions) and to the direction of the expecta-
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tions feedback.4 Generally, if the IoC parameter and/or the costs for the stabilizing

heuristic are high enough, the fraction of agents using the stabilizing heuristic at

the steady state is going to be low and will not be sufficient to stabilize the dynam-

ics. The steady state will then be unstable and prices as well as the distribution of

traders over the heuristics will fluctuate endogenously. The precise characteristics

of the dynamics as well as the threshold values of the IoC parameter and the costs

for the stabilizing heuristic will depend on the features of the underlying market

environment.

2.2 Dynamics of the state variable and performance of

heuristics

Our aim is to test the key assumptions and implications of the heuristic switching

model described above in a laboratory experiment with paid human subjects.

Laboratory experiments have the advantage that they generate clean data on

choice behavior, that information given to the subjects, as well as the underlying

model, are under control of the experimenters, and that subjects have well-defined

monetary incentives. In addition, laboratory experiments can be replicated. At

the same time, it is important to use decision environments that are not too

complicated, in order to ensure that subjects have a good understanding of the

task they are asked to perform. For this reason we want to use a stylized heuristic

switching model that still exhibits the main mechanism of the models described

above, but which is straightforward to implement in a laboratory experiment.

To that end, consider an economy where agents repeatedly choose between

two profitable alternatives (‘heuristics’), A and B. The profits generated by these

alternatives are determined by an underlying state variable xt. More specifically,

profits of choosing A and B in period t are given by

πA,t = WA + γAx
2
t , and πB,t = WB − γBx2t , (1)

respectively, where WA, WB, γA and γB are nonnegative parameters, with γA +

γB = 1. Note that profits for alternative A depend positively on the deviation of

4See ?, ?, and ?, respectively. Positive expectations feedback, where actual prices respond
positively to an increase in the average expected price, is typical for financial markets, whereas
negative expectations feedback, with a negative price response to an increase in price expecta-
tions, is common for supply-side driven markets, such as the cobweb market discussed above.
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the state variable from zero, and the other way around for alternative B.5

The evolution of the state variable xt depends upon the distribution of agents

over the alternatives A and B. In particular, we consider

xt = λnB,txt−1 + εt , (2)

where nB,t ∈ [0, 1] is the fraction of the population of agents that chooses alter-

native B in period t, λ is the feedback coefficient and εt is a small idiosyncratic

random shock. The sign of λ determines whether the feedback in the market is

negative or positive, with λ < 0 representing the cobweb model of ? and λ > 0

representing the asset pricing model of ?. In both cases, the state variable x can

be interpreted as the deviation of the price from its fundamental value.

The mechanism leading to endogenous fluctuations, discussed in Section 2.1 for

the case of the cobweb model, but also relevant for financial markets, is preserved

in the system consisting of equations (1) and (2), provided that WB > WA and

|λ| > 1. To see this, note that when the state variable xt equals its steady state

value of x∗ = 0, alternative B is more profitable than alternative A (at this point

πB = WB > WA = πA) and therefore attracts agents. Thus for low absolute

values of the state variable, fraction nB,t will increase over time. However, when

nB,t becomes large enough (in particular, when |λnB,t| > 1), the dynamics of the

state variable become unstable and xt will diverge away from its steady state value.

When the deviation of xt from zero becomes sufficiently large (to be specific, when

|xt| >
√
WB −WA) alternative A becomes more profitable and agents will tend to

switch to that alternative again, which stabilizes the dynamics, and so on.

The model presented here, therefore, corresponds to a stylized version of the

heuristic switching model described above, with alternative A playing the role of

the costly stabilizing heuristic and alternative B playing the role of the cheap

destabilizing heuristic. In addition, we can think of WB − WA as the costs for

heuristic A, because it corresponds to the difference in profits between the cheap

5In the standard model only the difference between profits matters for agents, cf. Eq. (4) in
Section 2.3. In our setup this difference is πA,t−πB,t = WA−WB+x2t , which, due to γA+γB = 1,
does not depend on the exact values of γA and γB . For the experiment we choose the values
of WB and γB such that profits of alternative B remain positive for a relatively large range of
values of xt. This is done in order to minimize the number of periods in the experiment where
payoffs for alternative B become negative. If in some period t the state variable xt is so large
that πB,t < 0, we assign payoff 0 to alternative B for that period. This approach, which ensures
that participating subjects have positive earnings, is common for laboratory experiments.
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heuristic B and the costly heuristic A, when xt = 0, that is, at the steady state.

In the remainder of this paper we will therefore denote costs for using heuristic

A (relative to the costs for using heuristic B) by C = WB −WA, which we will

assume to be strictly positive.6

2.3 The discrete choice model

The model given by equations (1)–(2) still lacks a description of how agents choose

between alternatives A and B when they know the past performance of alternatives

(i.e., profits πA,t and πB,t) but not the underlying profit generating mechanism.

The experiment presented in this paper is designed specifically to investigate that

decision, using human subjects. The most common approach to this choice prob-

lem in the literature on heuristic switching models is the so-called discrete choice

model, which – in one of its most basic forms – looks as follows. Let PA,t and

PB,t be the probabilities that an agent chooses alternative A and B in period t,

respectively. Probability PB,t is specified as

PB,t =
exp[βπB,t−1]

exp[α + βπA,t−1] + exp[βπB,t−1]
=

1

1 + exp[α + β(πA,t−1 − πB,t−1)]
, (3)

with PA,t = 1−PB,t. Here β ≥ 0 is the Intensity of Choice (IoC) parameter and α is

a parameter that measures the so-called predisposition effect. The intuition behind

the discrete choice model is that an increase in the performance of one alternative,

relative to the other alternative, increases the probability that an individual agent

chooses the former. The IoC parameter β measures how sensitive this probability

is with respect to the performance difference. The predisposition effect measures

a possible bias that agents have towards one of the alternatives: a positive value

of α implies that alternative A is chosen with a higher probability than alternative

B when their performance is the same. Similarly, a negative value of α implies

that agents are biased towards alternative B.

Assuming that there are many agents, with all of them choosing between al-

ternatives A and B according to (3), the Law of Large Numbers implies that the

6It is worthwhile to stress one difference with the models from ??. In our stylized version
the value of the state variable in period t depends upon nB,t. This allows us to write the model
as a simpler one-dimensional dynamical system, see Eq. (5), as opposed to the two-dimensional
dynamical systems in ??. The dynamics, as well as the mechanism driving them, is qualitatively
equivalent between the two settings. See Appendix A for a formal analysis.
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fraction of agents choosing alternative B is given by

nB,t =
1

1 + exp[α + β(πA,t−1 − πB,t−1)]
, (4)

with nA,t = 1− nB,t.

The canonical discrete choice model, as used in ?? and in the vast majority of

subsequent contributions, is given by (4) with α = 0. However, estimated discrete

choice models on survey data (?) and experimental data (?) suggest that the

predisposition effect plays an important role in explaining human behavior and

therefore we add it here as well.7

We can now complete the model presented in Section 2.2 by assuming that (4)

describes how the population of agents chooses between alternatives. Substituting

(1) and (4) in (2) and using γA + γB = 1 and C = WB −WA, we find that the

state variable xt evolves according to

xt = f (xt−1) + εt =
λxt−1

1 + exp[α + β(x2t−1 − C)]
+ εt . (5)

Appendix A analyzes the dynamics of this non-linear model and shows that the

key properties of the heuristic switching framework outlined in ?? are preserved.

It turns out that the dynamics of the state variable, given by the first order

difference equation (5), may give rise to complicated dynamics, even in absence

of random shocks (i.e., setting εt = 0). This depends in particular upon the

structural parameters λ and C and the behavioral parameters α and β.

Note that when the dynamics of the state variable are given by (5), the fraction

of choices for alternative B evolves as

nB,t =
1

1 + exp[α + β(x2t−1 − C)]
. (6)

When the state variable equals x∗ = 0, the fraction of B-choices is given by

n∗B = [1 + exp(α − βC)]−1. The following finding (which focuses on the case

7There exist alternative formulations of the discrete choice model, for example where perfor-
mance is measured by a weighted average of past profits (instead of only the profits from the
previous period) or where updating is asynchronous (that is, agents do not have the opportunity
to change between alternatives every period), see ?. As an alternative to the discrete choice
model, the evolution of the fraction choosing one particular alternative can be modelled by the
(exponential) replicator dynamics, see, e.g., ?, ? and ?. Derived from a process of imitation,
this evolutionary model leads to a more sluggish adaptation of fractions, which is similar to the
effect of asynchronous updating.

11



λ > 0) follows from the more general result proven in Appendix A.

Proposition 2.1. Consider the first order difference equation (5) with εt = 0.

For 0 < λ < 1 there is a unique globally stable zero steady state, x∗ = 0. For

λ > 1 the zero steady state is unique and locally stable as long as λn∗B < 1 and

unstable when λn∗B > 1. Moreover, when λn∗B > 1, two non-zero steady states x+

and x− exist, with x+ =
√
C + (ln(λ− 1)− α)/β and x− = −x+. The associated

steady state fractions are n+
B = n−B = λ−1. The non-zero steady states are locally

stable if β
(
1− n+

B

)
(x+)

2
< 1.

Clearly, an increase in the fraction of agents using alternative B inhibits sta-

bility of the zero steady state (recall that alternative B corresponds to the cheap

but destabilizing heuristic). Also note that we assume that C = WB −WA, the

costs for using the more sophisticated and stabilizing rule A, is positive. Clearly,

an increase in C increases n∗B and destabilizes the zero steady state, because – at

the steady state – more agents use the destabilizing rule. Likewise, an increase

in the IoC parameter β will destabilize the dynamics, since this also increases

the fraction of agents using alternative B (since they will do better at the steady

state). An increase in α, on the other hand, will promote stability. If the zero

steady state loses stability, for example because β increases, this occurs through

a so-called pitchfork bifurcation. In this bifurcation two new, non-zero, steady

states are created that are locally stable. The absolute deviation of these two

steady states from zero is the same and depends upon the behavioral parameters

of the model. With a further increase of β or C, these non-zero steady states

become unstable as well.8

Fig. 1 shows the stability regions of the different steady states for the case of

high costs, C = 8 (left panel) and low costs, C = 0.1 (right panel). The value

of the parameter λ is 2.1, which is the value that will be used in the experiment.

Note that for high costs the stability regions (both of the zero and of the non-zero

steady states) are much smaller than for low costs (also note that the scale on the

horizontal axis is very different).

The aim of the experiment in this paper, outlined below, is to verify that

the aggregate dynamics in our experiment will reproduce the patterns that are

predicted by the heuristic switching model. In addition, we want to fit the discrete

8Note that for the case of λ < 0 we get a similar stability condition. However, in this case,
instead of two non-zero steady states, a period two cycle {x−, x+}, with x− = f (x+) and
x+ = f (x−), is created when the zero steady state x∗ loses stability, see Appendix A.
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Figure 1: Bifurcation diagrams in (β, α)-coordinates for the stylized heuristic
switching model, showing the regions of stability for the zero steady state (dark
filled region), and non-zero steady states (light filled region). Left: Parameters
corresponding to the High blocks in the experiment. Right : Parameters corre-
sponding to the Low blocks in the experiment. Black points show the values of
(β, α) estimated on subjects’ choice data (see Section 5.2). The two black disks
on the left panel show the estimated values from the High Long treatment (see
Section 5.3).

choice model on the aggregate choice data, and in particular estimate the relevant

values of the intensity of choice parameter β and the predisposition parameter α.

3 Experimental Design

The experiment took place in June 2016 and October 2017 at the University of

Technology Sydney Behavioral Laboratory. In total 80 subjects were recruited for

four sessions, with 20 subjects participating in each session.9 Most subjects are

undergraduate students in economics and finance, and no subject participated in

more than one session. Each session lasted approximately 90 minutes and subjects

earned 25 Australian dollars (AUD) on average.

The task of the subjects in the experiment is to make a choice between two

investment alternatives, labeled A and B. In the beginning of each session the 20

9The Online Recruitment System for Economic Experiments (ORSEE), see ?, was used for
recruiting participants. The experiment was conducted using the z-Tree software, see ?. Two
sessions of an additional treatment, with more periods and larger groups, took place in September
2017. We will discuss the results for this additional treatment in Section 5.3.
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Figure 2: An example of the computer screen with interface elements. The upper
part of the screen is used to submit a decision by clicking on one of two radio
buttons, A or B. The lower part represents the history of profits for alternatives
A and B in two formats: a graph on the left and a table on the right. The last
column in the table shows the past choices of the subject.

subjects that participate in the session are randomly divided in two groups of 10.

Then, for 40 consecutive periods subjects make their binary choices, with their

payoffs dependent on the distribution of choices of the 10 subjects in their group.

After the first block of 40 decision periods is finished, subjects in the session are

randomly rematched to form two new fixed groups of 10 subjects. During the

second block, the subjects have to make their binary decisions for another 40

periods, with their payofs depending on the choices of the subjects in their new

group of 10 subjects.

At the beginning of every period subjects are provided with information about

the past profits of the two alternatives, both in the form of a table and a graph,

see Fig. 2. In addition they are informed about their own previous choices. As

soon as all subjects in the group have made their decision for period t, the actual

profits for the two alternatives are generated by (1), where the value xt of the

state variable10 is determined by (2). The profits of both alternatives are then

shown to the subjects together with their choice in period t. Subsequently they

10As explained in Section 2.2, this state variable can be thought of as the deviation of the
price from the fundamental value. We do not ask subjects to predict the values of this variable
(as they would do in the Learning to Forecast experiments). In fact, we do not even show the
evolution of this variable to the subjects. This design has been chosen to focus exclusively on
testing the discrete choice model, which assumes subjects only respond to the performance of
the heuristics.
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are asked to make their choice for period t+ 1.

For both blocks in each session we choose λ = 2.1 (implying that the dynamics

are unstable if, at equilibrium, at least half of the participants chooses alternative

B, see Proposition 2.1), γA = 0.6 and γB = 0.4. The random shocks are IID

distributed according to εt ∼ N(0, 0.02). We use the same realization of random

shocks for each block, and for each session. The only difference between blocks

are the values of WA and WB, that are chosen in order to generate blocks with

different costs, C = WB −WA, for the stabilizing heuristic. For the High blocks

we choose WA = 1 and WB = 9 (i.e., high cost is given by C = 8) and for the Low

blocks we choose WA = 4.95 and WB = 5.05 (i.e., low cost is given by C = 0.1).

The two treatments in our experiment, with two sessions each, only differ in

the order of the blocks: treatment High-Low starts with a block with C = 8,

followed by a block with C = 0.1, whereas the order is reversed for treatment

Low-High.11 We therefore have eight groups that make decisions in a High block

and eight groups that make decisions in a Low block. Each of these sixteen groups

consists of 10 subjects, with each subject participating in exactly one High and

one Low block. In the remainder we will identify groups by block, session and

group number (e.g., “High: session 1, group 2” refers to the second group in the

first block of the first session).

By the end of the experiment, subjects are paid for their decisions according to

the following procedure. For every subject we randomly choose two periods from

the first block and two periods from the second block. The sum of the payoffs

corresponding to the decision of the subject in these four periods is divided by two.

This constitutes the subject’s earnings in Australian dollars. In addition, each

subject receives a 10 AUD participation fee. The procedure ensures that subjects

have the financial incentive to make the best possible decision in every period of

the experiment. Experimental instructions are provided in Appendix B.12

11Treatment High-Low was implemented in sessions 1 and 3, treatment Low-High was imple-
mented in sessions 2 and 4.

12Before the experiment starts subjects are required to solve a short quiz which is designed
to check their understanding of the feedback effects and remuneration procedure. After the
experiment, subjects are given a questionnaire that focuses on background information, such
as demographic characteristics and field of study. The quiz and the questionnaire are available
from the authors upon request.
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Figure 3: Simulations of the stylized heuristic switching model with λ = 2.1. Left:
High blocks parametrization, C = 8. Right: Low blocks parametrization, C = 0.1.
Upper panels : Dynamics of state variable, x. Lower panels: Dynamics of fractions
of B-choices, nB.

4 Hypotheses

If the discrete choice model (4) gives a good description of the aggregate behavior

of subjects, then (5) and (6) should provide a good approximation13 of the dynam-

ics of the fraction nB,t and the state variable xt. The dynamics will depend upon

the specific characteristics of the economic decision problem (λ, γA, γB, WA and

WB), which are chosen by the experimenters, and upon the behavioral parameters

α and β, which describe the subjects’ decision making. Since C = WB −WA > 0

in both blocks, in equilibrium we will have n∗B > 1/2 (assuming α is not very

high and β > 0). Given that λ = 2.1, we therefore expect the zero steady state,

(x∗, n∗B) = (0, [1 + exp(α − βC)]−1), to be locally unstable in both the High and

the Low blocks, see Proposition 2.1. Moreover, the values of WA and WB in the

two blocks are such that for a large range of values of α and β the steady states

(x+, n+) and (x−, n−) will be stable for the Low blocks, but unstable for the High

blocks, see Fig. 1.

Fig. 3 illustrates the simulated dynamics of the stylized heuristic switching

13In the model fraction nB,t can take on any real value in the interval [0, 1]. In the experiment,
however, there are 10 subjects in a group, and, therefore, this fraction can only take on 11 values
(0, 0.1, 0.2, . . . , 1). Hence, (5) and (6) can only provide an approximation to the model dynamics.
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model (5)–(6) for the values of the structural parameters that we use in the exper-

iment, and with the same realization of the random shocks εt that is used in the

experiment. For these simulations we set the behavioral parameters to α = 0 and

β = 5. The left panels show the dynamics of x and nB in the High blocks. We ob-

serve a pattern familiar from the original model of ? with endogenous bubbles and

crashes of the state variable (corresponding to the deviation of the price from the

fundamental asset value in their framework). Note that due to the small random

shocks, the realized state variable may become negative when it approaches zero.

The right panels show the same dynamics for the Low blocks. Due to positive

values of ε in the first couple of periods, the state variable becomes positive and

stays close to the steady state value x+ =
√

ln (1.1) /5 + 0.1 ≈ 0.345 thereafter,

although it may occasionally ‘escape’ from that steady state when a sufficiently

low value of the noise term ε is realized (which happens in period t = 35).

The specific time series shown in Fig. 3 depend on the specific values of α and

β, but the main properties of the model, i.e., instability of all steady states with

endogenous bubbles and crashes for the High blocks and stability of the non-zero

steady state for the Low blocks, hold for a large range of values of these behavioral

parameters. Thus, if choice behavior is governed by the same heuristic switching

model in both environments we expect less stability and more volatile dynamics in

the High blocks than in the Low blocks, both in terms of the fraction of subjects

choosing B, and in the state variable xt. This leads to our first hypothesis on the

dynamics of nB,t and xt.

Hypothesis 1. There is a substantial difference in the volatility of both nB,t and

xt between the High blocks and the Low blocks.

If Hypothesis 1 is not rejected, it implies that the qualitative predictions of the

heuristic switching model are confirmed. The next step is to investigate whether

the discrete choice model (4) also gives a good quantitative description of the data.

To that end, we fit the discrete choice model on the aggregate data. This gives

our next hypothesis.

Hypothesis 2. The endogenous variable nB,t can be described by a discrete choice

model with one lag and a predisposition effect.

If this hypothesis is confirmed, it provides experimental evidence for the rel-

evance of the discrete choice model (4) as a description of aggregate decision

17



making, and would thereby lend support to the use of heuristic switching models.

Note that in ? it was established that a discrete choice model with one lag and

a predisposition effect is relatively successful in describing experimental data in

a setting where payoffs for the different alternatives are exogenously generated.

Hypothesis 2 checks whether this is also the case when there is feedback from

subjects’ decisions to the payoffs.

Ideally, the estimated discrete choice model – if it provides a good description

of the data – is similar for the High and the Low blocks. Comparable values of

the model’s behavioral parameters would suggest that human decision making is

independent of the specifics of the economic environment and governed by the

same underlying laws. Indeed, Hypothesis 1 implicitly assumes that the decision

process is the same for the High and Low blocks and so the variation in the

dynamics occurs because of the difference in the other characteristics of the High

and Low blocks (i.e., the difference in costs C = WB −WA). Our third and final

hypothesis deals with investigating this issue.

Hypothesis 3. There is no significant difference between the discrete choice mod-

els estimated on data from the High blocks, and the discrete choice models estimated

on data from the Low blocks.

In the next section we present the experimental data and test these three

hypotheses.

5 Experimental results on switching

In this section we will discuss the experimental results. We start out with present-

ing the experimental data in Section 5.1. We will also provide some descriptive

statistics and test Hypothesis 1 in that section. In Section 5.1 we estimate the

discrete choice model on the experimental data and discuss Hypotheses 2 and 3.

Finally, Section 5.3 is devoted to the analysis of an additional treatment with high

costs, which features larger groups and more periods.
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Fraction of B-choices, nB State variable, x
Data Mean Std. Dev. Mean Std. Dev.

High

Session 1. Group 1 0.58 0.27 2.43 1.52
Session 1. Group 2 0.61 0.25 2.26 1.52
Session 2. Group 1 0.60 0.27 2.51 1.47
Session 2. Group 2 0.58 0.28 2.39 1.27
Session 3. Group 1 0.55 0.22 2.33 1.27
Session 3. Group 2 0.55 0.21 2.35 1.11
Session 4. Group 1 0.60 0.26 2.02 1.45
Session 4. Group 2 0.64 0.29 2.15 1.42

All High groups 0.59 0.26 2.43 1.52

High Long
Session 5. Group 1 0.53 0.18 2.62 0.92
Session 6. Group 1 0.55 0.21 2.48 1.06

Low

Session 1. Group 1 0.56 0.23 0.26 0.22
Session 1. Group 2 0.51 0.23 0.26 0.24
Session 2. Group 1 0.55 0.24 0.17 0.21
Session 2. Group 2 0.56 0.24 0.13 0.28
Session 3. Group 1 0.55 0.24 0.32 0.22
Session 3. Group 2 0.50 0.23 0.12 0.25
Session 4. Group 1 0.51 0.24 0.31 0.18
Session 4. Group 2 0.54 0.27 0.16 0.32

All Low groups 0.53 0.24 0.26 0.22

Table 1: Descriptive statistics of the fraction nB and the state variable x.

5.1 The experimental data

First, we depict the evolution over time of the fraction nB,t of subjects choosing

alternative B. Figs. 4 and 5 show this fraction in the High and Low blocks,

respectively. A quick visual inspection of these figures suggests that the time

series of nB,t may indeed be slightly more volatile in the High blocks. For example,

out of 8 × 40 observations the boundary values of 0 and 1 are reached 23 times

(7.2%) in the High blocks, whereas they are only reached 10 times (3.1%) in

the Low blocks. However, the standard deviations of nB,t in the different groups,

reported in Table 1, appear to be roughly similar for the High and the Low blocks.

Indeed, the difference in standard deviations between High and Low blocks is not

statistically significant at the 5% level.14

To further investigate possible differences in the fractions, the top panels of

Fig. 6 show the histograms of the fraction nB,t of subjects choosing alternative B in

14The Ansari-Bradley test, which is suitable for distributions with similar means and shapes,
gives a p-value of 0.143, implying that we cannot reject the hypothesis of equal standard devia-
tions of the two distributions. Note that, in order to preserve independence of the observations,
we only used the first block in each session for this test (i.e., the four High blocks from Sessions
1 and 3 and the four Low blocks from Sessions 2 and 4). For all other test statistics (unless
noted otherwise) we pool the data from the first and second High (respectively Low) blocks.
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Figure 4: Fraction of choices of alternative B in High blocks.
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Figure 5: Fraction of choices of alternative B in Low blocks.
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Figure 6: Histogram of fraction of B-choices (Upper panels). Density histogram
of state variable, x (Lower panels). Left: High blocks. Right: Low blocks. The
vertical dashed lines in the lower panels indicate the zero steady state of x.

the High and Low blocks, pooled over all eight groups. These histograms also show

a small, but distinct, difference between the two types of blocks. The distribution

of choices in the Low blocks has a clear peak around 0.5− 0.7 (containing around

half of the observations), whereas the distribution of fractions in the High blocks

is much more evenly spread with substantially more observations of fractions nB,t

close to 1. In fact, the hypothesis of equality of the two distributions is rejected

at the 5% level.15

It is clear from the histograms of the fraction of B-choices that, although there

is a difference between the High and Low blocks in our experiment, this difference

is smaller than we would expect in case of stable and unstable dynamics in the

heuristic switching model. Consider, for example, the time series of fractions

given in the lower panels of Fig. 3 that are generated with α = 0 and β = 5.

15The Kolmogorov-Smirnov test for equality of distributions gives a p-value of 0.012.
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The histogram of fractions corresponding to the lower left panel of Fig. 3 (High

cost parametrization) will be bimodal, with many observations close to 0 or close

to 1, whereas the histogram of fractions corresponding to the lower right panel

(Low cost parametrization) will be single-peaked. Whereas the latter is indeed

consistent with the histogram for our Low block groups in Fig. 6, the histogram

for the High block groups can hardly be described as bimodal.

Because the fraction of subjects choosing alternative B is high in many periods,

deviations of xt from zero should be quite persistent, at least in those periods, see

Eq. (2). This is confirmed by inspection of Fig. 7 which shows the time series of xt

in all blocks of each session. Clearly, the mean and variance of xt are much higher

for the High blocks than for the Low blocks, as can also be seen from the last two

columns of Table 1. Both the difference in means and the difference in standard

deviations is statistically significant at the 5% level.16 Moreover, the mean values

of xt, both in the High and in the Low blocks, are significantly different from zero

as well, and the standard deviation of these time series is significantly higher than

they would be in a steady state of the model (where the standard deviation of xt

is equal to that of εt which, by construction, is approximately 0.14).17

Summarizing our results thus far, we conclude that, when looking at the dy-

namics of both nB,t and xt, Hypothesis 1 cannot be rejected, although, particularly

for nB,t, the difference between blocks is smaller than expected.

A more detailed look at the time series of xt leads to some interesting obser-

vations. First, the dynamics in the first half of the block are qualitatively similar

for each of the eight High block groups. In each group the variable xt increases

in several consecutive periods after which it ‘crashes’ in one period, sometimes by

a considerable extent.18 After this crash xt starts to increase again. This cycle is

16The Ansari-Bradley test of equal standard deviations (applied to the first blocks of each
session again) gives a p-value of 0.003. Since the data looks closer to a normal distribution
now, see the lower panels of Fig. 6, we also use an F -test for equal variances, which returns
a p-value of 0.000. Similarly, the p-value of the t-test of equal means is 0.000. Finally, the
Kolmogorov-Smirnov test for equality of distributions gives a p-value of 0.000.

17We can reject the hypothesis of zero mean for xt, both for the High and for the Low blocks
at the 1% significance level, using the t-test (p-values of 0.000 for both High and Low blocks).
We can also reject the hypothesis that the variance of xt is equal to the variance of εt, i.e., 0.02,
in favor of the alternative hypothesis that the variance is higher, both for the High and for the
Low blocks at a 1% significance level, using the Chi-Square test (p-values of 0.000 for both the
High and Low blocks).

18Note that the initial value of x was chosen to be x0 = 0. It follows that in the first period of
the experiment x1 = ε1 = 0.0538 (independent of the subjects’ choices). If the first realization
of the random variable εt would have been negative, it is likely that xt < 0 for all t.
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Figure 7: Time series of the state variable xt in all 16 groups.
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repeated two or three times in each of the eight groups. Interestingly, this type

of dynamics is characteristic for the type of heuristic switching model studied in

the literature on heterogeneous agents, see the upper left panel of Fig. 3 (also see

Fig. 2 in ?). However, in the second halves of the High blocks this structure in

the dynamics disappears in each of the eight groups and the behavior of xt be-

comes more irregular with no apparent structure. Second, the dynamics of xt in

the Low blocks are quite different and seem to be consistent with small irregular

fluctuations around a fixed positive value, with a decrease in xt in the last couple

of periods.19 Note that, since the non-zero steady state value x+ from Proposition

2.1 depends upon the behavioral parameters α and β, it is difficult to test directly

whether the mean of xt equals x+.20

5.2 Estimated discrete choice models

Our next step is to fit the discrete choice model (4) to the experimental data. That

is, we estimate the discrete choice model separately for the aggregate choices in

each group. Table 2 shows the results. Columns 3 and 4 give the estimated values

and the standard deviations for the intensity of choice parameter β, and columns 5

and 6 give the estimated values and the standard deviations for the predisposition

parameter α. We also estimated the model on the pooled data for all High block

groups and all Low block groups.

The data for each of the sixteen groups can be described quite well by the

discrete choice model, which confirms Hypothesis 2. In particular, the intensity

of choice parameter β is positive and significantly different from 0 for all groups.

The predisposition parameter α is positive (implying a predisposition towards

alternative A) and significantly different from 0 in five of the eight High block

groups, but only significantly different from 0 in three of the eight Low blocks

(and positive for only two of those).21

19This decrease in the last couple of periods seems to be due, at least partially, to a large
negative shock in period t = 35 of ε35 = −0.2944.

20Since subjects do not observe the realized values of the state variable xt, and because xt
only enters the profit functions (1) quadratically, its sign does not matter for the dynamics of
fractions. Choosing λ = −2.1, instead of λ = 2.1 would therefore lead to the same experimental
results (abstracting from the effect of random shocks), but with the state variable alternating
between positive and negative values. For the Low blocks the dynamics of the state variable will
then resemble a noisy period-two cycle, instead of a noisy non-zero steady state.

21Estimating the discrete choice model with the restriction α = 0 leads to new estimates for
β, which are quite close to the estimates in Table 2.
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IoC Predisposition Zero SS Non-Zero SS

Data Beta S.E. Alpha S.E. (x∗, n∗) f ′(x∗) (x+, n+) f ′(x+)

High

Session 1. Group 1 0.08 0.01 0.31 0.11 (0,0.58) 1.22 (2.30,0.48) 0.57
Session 1. Group 2 0.12 0.02 0.38 0.11 (0,0.64) 1.34 (2.36,0.48) 0.31
Session 2. Group 1 0.12 0.02 0.35 0.11 (0,0.64) 1.35 (2.42,0.48) 0.28
Session 2. Group 2 0.17 0.02 0.28 0.11 (0,0.74) 1.56 (2.63,0.48) -0.22
Session 3. Group 1 0.09 0.02 0.13 0.11 (0,0.64) 1.35 (2.76,0.48) 0.29
Session 3. Group 2 0.13 0.02 0.04 0.11 (0,0.72) 1.52 (2.90,0.48) -0.11
Session 4. Group 1 0.13 0.02 0.19 0.12 (0,0.69) 1.46 (2.69,0.48) 0.05
Session 4. Group 2 0.16 0.02 0.38 0.12 (0,0.71) 1.49 (2.49,0.48) -0.03

All High groups 0.12 0.01 0.25 0.04

High Long
Session 5. Group 1 0.15 0.02 0.08 0.09 (0,0.75) 1.58 (2.85,0.48) -0.27
Session 6. Group 2 0.16 0.02 0.10 0.09 (0,0.76) 1.60 (2.82,0.48) -0.32

Low

Session 1. Group 1 3.35 0.84 0.26 0.11 (0,0.52) 1.09 (2.23,0.48) 0.82
Session 1. Group 2 5.24 0.93 0.09 0.11 (0,0.61) 1.27 (2.32,0.48) 0.45
Session 2. Group 1 11.35 1.66 -0.17 0.13 (0,0.79) 1.65 (2.35,0.48) -0.46
Session 2. Group 2 8.67 1.47 0.10 0.11 (0,0.68) 1.43 (2.32,0.48) 0.10
Session 3. Group 1 2.36 0.67 0.26 0.10 (0,0.49) 1.04 (2.18,0.48) 0.92
Session 3. Group 2 10.47 1.72 -0.38 0.13 (0,0.81) 1.69 (2.38,0.48) -0.60
Session 4. Group 1 5.04 1.04 0.16 0.11 (0,0.58) 1.23 (2.29,0.48) 0.54
Session 4. Group 2 8.06 1.31 0.21 0.11 (0,0.65) 1.36 (2.29,0.48) 0.27

All Low groups 5.71 0.42 0.11 0.04

Table 2: Estimation of discrete choice model with two parameters, the intensity
of choice parameter, β, and the predisposition parameter, α.

One remarkable feature of the parameter estimates stands out from Table 2.

Although the estimated intensity of choice coefficients for the same type of blocks

have roughly the same order of magnitude, these coefficients are radically differ-

ent between different types of blocks, with the estimates for the Low block groups

about 50 times as high as those for the High block groups. The subjects therefore

seem to be much less sensitive to profit differences in the ‘unstable’ High blocks

than in the ‘stable’ Low blocks. Clearly, this means that we have to reject Hy-

pothesis 3. This is broadly consistent with the results of ? who show that the

estimated values of the intensity of choice increase when there is more structure in

the time series of payoffs, and indeed the time series of payoffs in the Low blocks

are less volatile and more predictable than those in the High blocks.22

For each group we superimposed the estimated values of α and β in the stability

graphs of Fig. 1. First consider the eight data points corresponding to the Low

blocks (the right panel). As we expected, all of them are in the region of the

parameter space where the zero steady state (x∗, n∗) is unstable, but where the

22Another reason may be that the discrete choice model is not invariant with respect to changes
in profit levels. That is, an increase in β is equivalent with exactly the same increase in profits,
see Eq. (4). However, in our experiment average profits, as well as average profit differences, are
roughly the same for both types of blocks (although the standard deviation of profits is higher
in the High blocks).
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non-zero steady state (x+, n+) is locally stable. This is confirmed by the last four

columns in Table 2, which show the zero and non-zero steady state and the slope

of the dynamical system, at those steady states, respectively, that are implied

by the estimated values of α and β. Comparing x+ with the mean value in the

experiment, given in column 4 of Table 1, suggests that the dynamics indeed

converges to the non-zero (positive) steady state in each of those groups, although

there is some excess volatility around that steady state.

Now consider the estimated discrete choice models for the High block groups,

which are depicted in the left panel of Fig. 1. When designing the experiment

we expected the dynamics in these High blocks to be unstable, and indeed the

variations in xt and, to a weaker extent, nB,t, are higher in those blocks – see the

discussion in Section 5.1. However, it turns out that the estimated parameters

for these blocks are located in the region of local stability of the non-zero steady

state, even if it requires very low levels of the intensity of choice parameter β.

Moreover, the non-zero steady state values of x+ shown in Table 2, implied by

the estimated values of α and β, are very close to the mean value of xt in each

of these eight High block groups. Although there is substantial volatility around

the steady state, it seems that also in this case there is convergence to the non-

zero steady state. Apparently, after experiencing the dynamics that is typical for

the heuristic switching model in the first half of the block, subjects become more

cautious and are able – at least to a certain extent – to stabilize the dynamics in

this highly volatile and unstable environment, by behaving according to a discrete

choice model with a low value of the intensity of choice parameter β.

5.3 Further evidence on the endogeneity of the IoC pa-

rameter

The analysis in Sections 5.1 and 5.2 suggests that subjects in our experiment on

the heuristic switching model have a tendency to adapt their choice behavior to

their environment. Partly due to the time and space constraints imposed by using

laboratory experiments, the number of subjects and periods in our experiment are

limited to 10 subjects per group, and 40 periods per block, respectively. A relevant

question is whether our results are robust to increases in the group size and time

horizon. To investigate this, we run an additional treatment that differs from the

two treatments described and analyzed above in three ways: (i) the parametriza-

27



0 10 20 30 40 50 60
time period

0

0.2

0.4

0.6

0.8

1

fr
ac

tio
n 

of
 B

 c
ho

ic
e

High Long: group 1

0 10 20 30 40 50 60
time period

0

0.2

0.4

0.6

0.8

1

fr
ac

tio
n 

of
 B

 c
ho

ic
e

High Long: group 2

0 10 20 30 40 50 60
time period

0

1

2

3

4

5

st
at

e 
va

ria
bl

e,
 x

High Long, group 1

0 10 20 30 40 50 60
time period

0

1

2

3

4

5

st
at

e 
va

ria
bl

e,
 x

High Long, group 2

1 - 10 1 - 20 1 - 30 1 - 40 1 - 50 1 - 60
subperiod

0

0.1

0.2

0.3

Io
C

Changes of the IoC parameter over time

High Long: group 1

High Long: group 2
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tion of the underlying model is fixed over the course of the treatment, and equal

to that of the High blocks in the other two treatments; (ii) the experiment runs

for 60 periods; and (iii) we increase the group size to 33 participants. Note that

the increase in the number of periods allows us to better study the adaptation of

the intensity of choice parameter to the decision environment over time, and the

increase in the number of participants gives us a less coarse approximation of the

fraction nB,t of the original model. We ran two sessions of this treatment, with

one group in each session.

The upper panels of Fig. 8 show the evolution of the fraction nB,t in the two

groups. The larger group size hardly smooths out the dynamics: The fractions

are still quite volatile over the full 60 periods of the experiment. In fact, in quite

some periods at least around half of the subjects switch to another heuristic.

However, the larger group size contributes to the fact that the fraction nB,t rarely

approaches its boundary values of 0 and 1 closely – only in one period in session

2 all 33 participants choose the same heuristic. The middle panels of Fig. 8 show

the dynamics of the state variable xt for the two groups. Again, both groups start

out with the familiar pattern of a slowly increasing bubble which crashes after

a couple of periods, after which the state variable increases again. Eventually

– as with the shorter High blocks studied above – the dynamics fluctuate in an

erratic manner around some positive fixed value of the state variable (note that

the amplitude of the fluctuations in the state variable is less than that in the High

blocks, again due to the increased group size). These results suggest that our

earlier findings for the High cost blocks are robust to increasing the number of

periods and the group size. This is confirmed by the descriptive statistics for this

High Long treatment in Table 1 and the estimation of the discrete choice model

for this treatment presented in Table 2 and in Fig. 1, which are consistent with

those for the High blocks.

The larger number of periods in the High Long treatment allows us to investi-

gate in more depth how subjects adapt their behavior to the dynamics of payoffs.

To that end, we split our sample into six subsamples of increasing length, with

the first subsample consisting of the first 10 time periods, the second subsample

consisting of the first 20 time periods, and the last ‘subsample’ corresponding to

the full time series of 60 periods. The discrete choice model is estimated on each of

these six subsamples, and the estimated value of the intensity of choice parameter

β is presented in the bottom panel of Fig. 8. We see that the estimated intensity
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of choice parameter indeed decreases over time. This parameter lies above the

stability threshold (assuming α = 0) of the non-zero steady state for the first sub-

sample, but below it from the second subsample onwards. Moreover, the estimated

values show very similar patterns for the two different groups.

Why do subjects become less sensitive to past performance over time in the

High cost environment? This may be because in that environment payoffs are very

erratic and volatile, and may not predict future payoffs very well. Subjects may

realize this after the first ten to fifteen periods, and then start to rely to a lesser

extent upon past performance when choosing their heuristic. This in turn brings

down volatility. Indeed, the standard deviation of profit differences is equal to 4.76

and 5.21 in the first 20 periods in the two High Long groups, but for periods 21–40

the standard deviation is down to 4.25 and 4.13, respectively, and it decreases to

3.01 and 2.95 for the last 20 periods.

6 Conclusion

After its introduction in ??, the heuristic switching model has become a workhorse

model in the field of heterogeneous agents and agent-based modeling. The stan-

dard discrete choice framework, according to which agents choose between heuris-

tics – typically corresponding to different forecasting rules – on the basis of their

past performance, is a central element of this model. The resulting changes in the

distribution of agents over heuristics influence the evolution of the state variable

(typically, the asset price), which feeds back into the performance of the heuristics.

This interaction between the dynamics of the state variable, and the dynamics of

the distribution of heuristics, is capable of generating endogenous bubbles and

crashes, excess volatility, and other stylized facts of financial markets. It there-

fore presents a natural extension to the work on the dynamics arising from the

coexistence of fundamental and trend-following rules that started with ? and ?.

In this paper we present a laboratory experiment to test the heuristic switching

model. Similar to the experiment described in ?, the only task of the subjects is to

choose one of two heuristics, and subjects are paid according to the performance

of the heuristic they choose. Contrary to the previous experiment, however, in

the experiment presented here the subjects’ aggregate choices determine, through

a hidden state variable, the payoffs generated by the heuristics – an important
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feature of the standard heuristic switching model as well. In particular, our ex-

periment reproduces, in a stylized form, the interaction between a costly sophis-

ticated and a simple cheap heuristic, where the latter is destabilizing when used

by many subjects, and the former is stabilizing.

We vary the (implicit) cost of using the stabilizing heuristic between different

blocks in the experiment. Theoretically, the heuristic switching model will gen-

erate dynamics that are relatively stable when costs are low (in the Low blocks)

and give rise to endogenous bubbles and crashes when costs are high (in the High

blocks). Although the theoretical prediction is confirmed in the Low blocks, the

results from the High blocks are ambiguous. In particular, we do observe en-

dogenous bubbles and crashes in the first half of the High blocks. However, this

characteristic pattern disappears in the second half of the High blocks, and the

dynamics become more stable. We estimate the discrete choice model on the ex-

perimental data and find that the intensity of choice parameter is much lower for

the High blocks, suggesting that subjects adapt their behavior and become less

sensitive to payoff differences in a less stable environment – this is consistent with

the findings in ?. The reason that subjects adapt their behavior might be driven

by the fact that, in the high cost environment, payoff differences tend to be highly

volatile and unpredictable, and therefore may not perform well as a predictor of

future success. Upon realizing this, subjects’ response to past payoffs becomes

weaker, which brings down this volatility in payoff differences endogenously. This

is confirmed in the High Long treatment, which features more decision periods.

Here the estimated values of the intensity of choice parameter indeed decrease

over time, inducing a reduction in volatility. An interesting extension for future

research would be a treatment with a fixed group of subjects, each of whom has

to choose between the two alternatives again, but where – without informing the

subjects directly – the costs associated with alternative A change at several in-

stances during the experiment. Such a change in costs will effect the volatility of

payoff differences, which may lead subjects to adapt their behavior.23 A practical

difficulty of running such a treatment is that it requires many decision periods and

will therefore take a long time, with the risk that boredom or lack of concentra-

tion on the part of the subjects will effect the results. Nevertheless, based upon

our High-Low and Low-High treatments, where such a change in costs was imple-

23Recall that in our experiment subjects do not observe the costs for the stabilizing heuristic
directly, nor do they observe the evolution of the state variable xt. That is, their choice has to
be solely based on past payoffs.

31



mented, but accompanied by a reshuffling of the groups and a restart of the time

series of payoffs, we conjecture that subjects will respond to volatility of profit

differences and the estimated intensity of choice parameter will change over time.

Our results have important implications for the way choice behavior is modeled

in heuristic switching models. They suggest that a model in which the intensity

of choice parameter is endogenous, and depends positively upon some measure of

volatility of payoff differences, potentially provides a better description of choice

behavior. Adapting the benchmark model in this way may turn out to be quite

relevant since the assumption that the intensity of choice parameter is exogenously

given can impose a bias in the conclusions derived from theoretical heuristic switch-

ing models. Consider, for example, a volatile financial market that is described

well by a particular heuristic switching model. On the basis of that model the

financial regulator may want to implement a policy that – based upon numerical

simulations – stabilizes market dynamics. However, if traders react to the in-

creased stability and predictability of profits in this market by starting to respond

more strongly to profit differences – as suggested by our experimental results –

this may strongly mitigate the effect of the policy.
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APPENDIX

A Stylized HSM

In the experiment we use a stylized heuristic switching model. Below we provide
a formal analysis of this model and show that the properties of the original Brock-
Hommes model are preserved.

The dynamics of the stylized model are given by the 1D equation (5). We
switch the noise off, εt = 0, to focus on the analysis of the deterministic skeleton
xt+1 = f(xt), with

f(x) =
λx

1 + exp[α + β(x2 − C)]
, (A.1)

where C = WB −WA can be interpreted as the costs for alternative A. Given the
value of the state variable, xt, we can easily recover the fraction of B-choices as

nB,t+1 =
1

1 + exp[α + β(x2t − C)]
=
xt+1

λxt
. (A.2)

In the analysis below we assume C > 0 and β ≥ 0, but we will not restrict
the other parameters. Note that in the experiment presented in the paper we
set λ = 2.1 and C = 8 (High blocks) or C = 0.1 (Low blocks). The behavioral
parameters α and β, from the discrete choice model, describe subjects’ choices.

The following result characterizes the dynamic properties of (A.1).

Proposition A.1. Let f be defined in (A.1) with C > 0 and β ≥ 0. Consider the
system xt+1 = f(xt) and let n∗ = 1/(1 + exp[α− βC]).

1. x∗ = 0 is a steady state for all parameter values. In this steady state the
fraction of agents choosing alternative B is given by n∗B = n∗. This steady
state is unique for λ < 1 and globally stable when |λn∗| < 1.

2. For λ > 0, the system undergoes a pitchfork bifurcation when λ = 1/n∗ > 1.
At the bifurcation two non-zero steady states, x+ > 0 and x− = −x+, are
created, with corresponding steady state fraction n+

B = n−B = 1/λ.

3. For λ < 0, a period doubling bifurcation occurs when λ = −1/n∗ < −1. At
the bifurcation a two-cycle {x+, x−}, with x+ > 0 and x− = −x+, is created,
with corresponding steady state fraction n+

B = n−B = −1/λ.

Proof. It is obvious that x∗ = 0 is a steady state of the system. Other steady
states are solutions of the equation

1 =
λ

1 + exp[α + β(x2 − C)]
⇔ exp[α + β(x2 − C)] = λ− 1 .
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This equation has no solutions when λ ≤ 1. For the case λ > 1 we find that

x2 =
ln(λ− 1)− α

β
+ C .

Therefore, for α < ln(λ − 1) + βC (which is equivalent to λ > 1/n∗) the original
system has two non-zero steady states

x± = ±

√
ln(λ− 1)− α

β
+ C . (A.3)

In both steady states, n∗B, the fraction of agents choosing B is equal to 1/λ.

To investigate the local stability properties of the steady states we take the
derivative of f(x):

f ′(x) =
λ

1 + exp[α + β(x2 − C)]
− 2x2λβ

exp[α + β(x2 − C)]

(1 + exp[α + β(x2 − C)])2
.

In the zero steady state the slope is λ/(1 + exp[α− βC]) = λn∗. Thus it is locally
asymptotically stable for |λn∗| < 1. Moreover, we can also write

|xt+1| = |λxt|
1

1 + exp[α + β(x2 − C)]
≤ |λxt|

1

1 + exp[α− βC]
= |λ||xt|n∗ .

Therefore, when |λn∗| < 1 the map is a contraction and the zero steady state is
globally stable.

The slope at the zero steady state is equal to 1 when λ = 1/n∗. Given that
the map f is odd, system is symmetric with respect to x. Therefore at λ = 1/n∗

the system undergoes a pitchfork bifurcation. We have shown above that the two
steady states for λ > 1/n∗ are x+ and x− as given by (A.3).

When λ = −1/n∗, the slope at the zero steady state is equal to −1 and, hence,
the system undergoes a period-doubling bifurcation. For λ < −1/n∗ we can define
x+ and x− in analogy with (A.3) as

x± = ±

√
ln(|λ| − 1)− α

β
+ C .

Then

f(x+) =
λx+

1 + exp[α + β((x+)2 − C)]
=
λx+

|λ|
= −x+ = x− and f(x−) = x+ .

Thus, {x+, x−} is a two-cycle created at the moment of the bifurcation. It then
follows from (A.2) that along this cycle nB ≡ −1/λ.

We illustrate the properties of the system in Fig. 9 with six bifurcation di-
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Figure 9: Bifurcation diagrams with respect to the Intensity of Choice, β, for
system (A.1) with λ = 2.1. Left panels : High cost, C = 8. Right panels : Low
cost, C = 0.1. Predisposition parameter: α = 0.4 (top panels), α = 0 (middle
panels) and α = −0.4 (lower panels).

agrams. To build them we fix λ = 2.1 and consider two values of cost, as in
the experiment. The diagrams in the left panels are built for High cost (C = 8)
and the diagrams in the right panels are built for Low cost (C = 0.1). For each
diagram we fix a specific value of α as follows: α = 0.4 for the diagrams in the
top panels, α = 0 for the diagrams in the middle panels, and α = −0.4 for the
diagrams in the lower panels. Finally, for each diagram, we vary β between 0 and
5 for High cost and between 0 and 50 for Low cost, and show (against every value
of β) 500 points of the dynamics of system (A.1), initialized at x0 = 0.25, after
400 transitory periods.24

We note that the left and right diagrams look similar for every row, exhibiting

24Since the noise εt is off, the state variable x will stay positive on every trajectory for such
initial value. The bifurcation diagrams for negative initial value look similar to those shown in
Fig. 9, but it is in the negative domain of the state variable.
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the typical shape of the Brock-Hommes framework. When β increases, first, the
zero steady state loses stability through the pitchfork bifurcation, as proven in
Proposition A.1.2. Two non-zero steady states are created, and we observe one of
them, x+. It is straightforward to check that the slope of f in each of the steady
states is given by

f ′(x±) = 1− 2β

(
ln(λ− 1)− α

β
+ C

)(
1− 1

λ

)
.

Therefore, for any value of λ and the other parameters, when β increases the slope
will decrease and the non-zero steady state will eventually lose stability through a
period doubling bifurcation. A further increase in β, as shown in Fig. 9, leads to
complicated dynamics with increasing ranges of the state variable. The points of
bifurcations occur much earlier, however, for the High cost case than for the Low
cost case. Bifurcations diagrams do not change significantly also with changes in
α (except that the zero steady state is never stable for relatively high α, but it is
stable for low values of β, when α is low).

Our choice of parameter values in the experiment was motivated by these
diagrams, as they predict different behavior in two treatments for very large range
of values of behavioral parameters, β and α, under assumption of similar behavior
in two treatments.
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B Experimental Instructions

Below we provide the short version of the instructions. For the full version which
includes the examples of screens explained to the participants, quiz, and question-
naire, see the On-line Appendix.

General information

Today you will participate in an experiment which will require you to make eco-
nomic decisions. During the experiment you will be able to earn a number of
points. The better your decisions are, the more points you are likely to earn.
These points will be converted into Australian dollars after the experiment.

Task overview

Consider a situation in which you are offered a choice between two investment
alternatives. As in real markets, the profits of these alternatives depend on the
decisions of all market participants (including yourself) and also on chance.

This experiment has two parts25, each consisting of 40 decision periods.
In the beginning of each part you will be randomly matched to several other par-
ticipants in this experiment that will be active in the same market. The same
participants will be in the same market as you during this first part of the exper-
iment. Every decision period you will have to choose one of the two alternatives,
A or B. After you, and all other participants, made a decision, the profits of both
alternatives are determined. Your decision will determine how many points you
may get for this period. This number of points will be used to determine your
final earnings. The exact procedure that determines your final earnings from the
experiment is explained below (under Remuneration).

Example: if in some decision period you have chosen A, and then (on the
basis of this decision and others’ choices) the profits of the alternatives turned out
to be 7.35 for A and 2.53 for B, then for this period you will be able to get 7.35
points.

Before you select one of the alternatives you will be shown the profits of both
alternatives for all previous periods, as well as the history of your own decisions.
The only exception is the very first period (for each of the two parts), when no
history is available. Note that the prospective profits are not known to you at the
moment of your decision. After you made your decision for a given period, you
will get all the information on realized profits of both alternatives as well as your
number of points for this period.

After the first part of the experiment is finished, i.e., after the first 40 decision

25In additional sessions with High Long block Instructions were changed accordingly.
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periods, the second part of the experiment starts. For this part you will be
assigned to another group with several other participants (some, but not all, of
them may be from the market that you participated in in the first part). This
new group of participants now participates in another market, which is similar but
where profits of the two alternatives are determined in a different manner. You
will perform the same task of choosing between the two alternatives for another
40 periods.

You will see a countdown timer at every decision period. You do not have to
finalize your decision in that time interval, but we nevertheless ask you to make
your decisions in a timely manner.

Remuneration

Your total earnings in this experiment will be determined after the experiment
by the following procedure. Two different periods will be chosen randomly by
the computer program from the 40 periods of the first part of the experiment.
Another two periods will also be chosen randomly by the computer program from
the 40 periods of the second part of the experiment.

The sum of your points from these 4 periods divided by 2 will constitute the
final earnings in Australian Dollars. Your final earnings will be rounded to the
nearest value with a half-dollar precision.

In addition you will receive 10 AUD as show-up fee.

Note that with this procedure your performance for every period of the
experiment potentially matters for your final monetary payoff.

At the end of each part of the experiment you will be shown the final screen
with information about all your decisions in this part as well as profits of the
two alternatives. You will also be informed which decision periods were randomly
chosen for payment purposes. If you wish, you can keep this information for
yourself in the last page of these Instructions.

Additional information

• Before the experiment starts you will have to take a short quiz which is
designed to check your understanding of the instructions.

• By the end of the experiment you will be asked to answer a questionnaire.
Inserted data will be processed in nameless form only. Please fill in the
correct information.

• During the experiment any communication with other participants, whether
verbal or written, is forbidden. The use of phones, tablets or any other

42



gadgets is not allowed. Violation of the rules can result in exclusion from
the experiment without any remuneration.

• Please follow the instructions carefully at all the stages of the experiment.
If you have any questions or encounter any problems during the experiment
please raise your hand and the experimenter will come to help you.

Please ask any question you have now!
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