
NCoVaR Granger causality

Cees Diksa,b, Marcin Wolskic,∗

aCenter for Nonlinear Dynamics in Economics and Finance (CeNDEF), University of
Amsterdam, Roetersstraat 11, 1018 WB Amsterdam, The Netherlands

bTinbergen Institute, Gustav Mahlerplein 117, 1082 MS Amsterdam, The Netherlands
cEuropean Investment Bank, 98-100 Boulevard Konrad Adenauer, 2950 Luxembourg, Luxembourg

August 2018

Abstract

We propose a new methodology to assess risk transmission effects between individual com-

panies or sectors and to measure their contributions to systemic risk. We extend the Condi-

tional Value-at-Risk (CoVaR) approach, introducing explicit nonparametric CoVaR (NCo-

VaR) measures of cross-sectional dependence and Granger causality. By showing that the

natural estimators are U-statistics, we construct formal nonparametric tests for indepen-

dence and NCoVaR Granger non-causality. Numerical simulations confirm that in common

situations the nonparametric tests have better size and power properties than their paramet-

ric counterparts. The methodology is illustrated empirically by assessing risk transmissions

between sovereigns and banking sectors in the euro area.
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1. Introduction

The global financial crisis and the subsequent sovereign debt crisis shed new light on

the complexity within the financial sector. The linkages and risk exposures between various

institutions and sectors proved to be of great importance in transmitting distress across the

financial system. Additionally, during systemic events the spread of malaise is accelerated

through indirect channels, such as price effects and liquidity spirals (Brunnermeier, 2009). In

effect, market values of various financial assets tend to move closer together during financial

distress, drifting away from their fundamentals and demonstrating dependence in the form

of tail co-movements (Adrian and Brunnermeier, 2016).

A commonly-used econometric approach to assess the level of such co-risk shifts is Con-

ditional Value-at-Risk (CoVaR), introduced by Adrian and Brunnermeier (2016). It extends

the concept of Value-at-Risk (VaR), which determines the maximum loss on returns within

the γ-percentile confidence interval (Kupiec, 2002). CoVaR assesses VaRγ of one institution

conditional on distress in the other.1

The estimation of CoVaR usually involves (linear) quantile regression techniques and/or

GARCH-type models. As noted by Rothe (2010) and Jeong et al. (2012), a shortcoming

of taking a parametric approach lies in its susceptibility to model misspecification. Clearly,

standard linear and/or (G)ARCH type parametric approaches may overlook deviations from

linearity and/or normality, and hence might lead to inaccurate co-risk estimation results.

Motivated by this, we develop a nonparametric measure for tail co-movement, which is

robust to the above-mentioned shortcomings but it is still intuitively comparable to CoVaR.

Our measure is dubbed NCoVaR, which stands for ‘nonparametric CoVaR’. Below we first

extend the original instantaneous CoVaR setup to the nonparametric setting and then intro-

duce Granger causal effects by extending this notion to NCoVaR Granger causality, a form

of nonparametric (general) Granger causality in distribution. To complete the picture we

1In this paper we use the term ‘institution’ as describing returns on a specific asset, company, or sector.
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also introduce a parametric Granger causality measure by extending CoVaR parametrically.

The family of CoVaR measures, highlighting the ones developed in this paper, is summarized

in Table 1.

Table 1: Taxonomy of CoVaR measures. Entries in italics highlight the contributions of this paper.

method type of dependence

cross-sectional/instantaneous causal/dynamic
parametric CoVaR CoVaR Granger causality

nonparametric NCoVaR NCoVaR Granger causality

By using U-statistic representations we derive asymptotic normality of the nonparamet-

ric estimators and demonstrate numerically that NCoVaR and NCoVaR Granger causality

offer superior performance in the presence of dynamic spillover effects, compared to their

parametric counterparts. In the same spirit, Jeong et al. (2012) proposed a nonparametric

test for causality in quantile, extending the work of Hong et al. (2009) to nonparametric

Value-at-Risk estimation. These methodologies are complementary to ours in the sense that

whereas these authors focus on the effect of one variable on the conditional quantiles of

another, we study conditional tail probability effects.

Finally, we apply the proposed methodology to assess the bank-sovereign risk transmis-

sion between selected Euro Area (EA) countries. We confirm the differences between the

core- and vulnerable-EA dynamics, identified earlier by Paries et al. (2014), Ohnsorge et al.

(2014) and EIB (2016). We furthermore argue that NCoVaR is a more conservative method-

ology, grasping key fundamental causal relationships, and to a higher extent it captures the

information spanned by extra confounding variables.

A major motivation for considering causality lies in its possible applications to networks

and contagion analysis (see e.g. Chinazzi and Fagiolo, 2013). Looking at any pair of insti-

tutions, the possible mutual risk transmission effects do not have to be bilaterally equal (as

they are implicitly assumed to be in a linear Gaussian setting). For instance, a lender has a

different kind of risk exposure to a creditor than vice versa. NCoVaR Granger causality cap-
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tures that phenomenon explicitly, allowing for a more detailed analysis of network spillover

effects, cascades and shock propagation. The general type of Granger causality employed

in this study, i.e. a nonparametric version of the concept originally proposed by Granger

(1969), is intuitive and requires minimal model restrictions. A parametric Granger causality

measure has already been successfully applied as a network mapping tool in financial analysis

(Gao and Ren, 2013). Such a general notion of causality appears to be particularly relevant

in the exact characterization of feedback loops and propagation mechanisms.

The use of nonparametric methods makes NCoVaR perform well in nonlinear and/or non-

Gaussian settings. In fact, the existence of nonlinearities is widely recognized in the financial

literature. For instance, von Borstel et al. (2016) find that the sovereign debt crisis changed

the composition of the pass-through, adjusting for indirect effects from lower sovereign risk

premia in the EA. Kitamura et al. (2016) find that banks with high shares of relationship

lending appear to be characterized by nonlinear pass-through effects. This is somehow in

line with a more general finding of Huang et al. (2010) and He and Krishnamurthy (2012),

who suggest that banking risk is a nonlinear function of asset exposure.

The motivation behind the empirical part stems from the strong adverse effects from

the bank-sovereign feedback loops, i.e. the interdependence of the banking sectors and cor-

responding sovereigns, on the real economy and taxpayers. The majority of econometric

approaches in these fields focus on co-risk measures, where the risk of one sector is assessed

in relation to the risk of the other one. The intuition behind these models lies in negative

externalities. As argued by Adrian and Brunnermeier (2016), such externalities are a conse-

quence of asset exposures, excessive risk taking and leverage. Given, for instance, that the

banking sector is facing a liquidity shock, it liquidates its assets, including sovereign secu-

rities, at fire-sale prices as given, affecting the borrowing constraints of the sovereign. On

the other hand, sovereign characteristics are often perceived as a country-wide benchmark

in credit risk assessment. It is rarely the case that a financial entity ‘pierces the sovereign

ceiling’ in a credit rating context. Furthermore, sovereigns are often the implicit guarantors
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of the financial system (Acharya et al., 2014).

Angelini et al. (2014) look at the correlation between sovereign and bank CDS premia,

and compare them with the feedback loops between sovereign and corporate sectors. They

point out that the sovereign risk spillovers are not limited to the financial sector, but in

a similar fashion they affect the corporate risk. Consequently, they argue that country-

wide risk appears to be the major underlying risk factor behind the bank-sovereign relation.

Furthermore, through a prism of a correlation network analysis, Ohnsorge et al. (2014) report

that sovereign-bank relations may amplify shock propagation. They suggest that there is

a difference in sovereign-bank relations between so-called safe-havens and other countries,

where safe-havens are defined as having two triple-A ratings and a negative beta. In line

with Ohnsorge et al. (2014), our empirical evidence confirms different bank-sovereign risk

transmissions between such defined country groups, on the sample of EA countries.

This paper is organized as follows. In Section 2 we explain the methodology of NCoVaR

and NCoVaR Granger causality. We evaluate the asymptotic properties of the test statistic

and we confirm them numerically in Section 3. In Section 4 we test our approach on the EA

sample. Section 5 concludes.

2. Methodology

In this section we introduce the main mechanics of the parametric and nonparametric risk

transmission measures. For convenience we begin by highlighting the main features of the

standard CoVaR methodology. We then introduce a nonparametric extension of CoVaR to

finally complement both CoVaR methods with their Granger causality analogues determined

by conditional rather than unconditional dependence.

2.1. CoVaR

To start with the basics, the unconditional Value-at-Risk (VaRγ) of a continuous random

variable Y representing losses of an institution, j, say, is defined as the γth quantile of Y for
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a given probability γ ∈ (0, 1), that is

P
(
Y ≤ VaRY

γ

)
= γ. (1)

To make the presentation transparent and consistent with our further argumentation, let

us denote the losses of another institution, i, say, by X. The conditional Value-at-Risk,

or CoVaR, proposed by Adrian and Brunnermeier (2016), measures the effect of an event

C(X) occurring in institution i on V aRγ of institution j. To put it formally, one can rewrite

CoVaR as

P
(
Y ≤ CoVaRY |C(X)

γ |C(X)
)

= γ. (2)

To capture risk transmission effects, also referred to as tail dependence, Adrian and

Brunnermeier (2016) introduced the measure ∆CoVaR, which measures the change in CoVaR

of an institution j when the conditioning event of institution i changes. ∆CoVaR measures

the effect of a shift in X from the median to the tail quantile (from a safe to a risky state)

of institution i on the performance of institution j. Formally, one can define

∆CoVaRY |X
γ = CoVaR

Y |X=VaRXγ
γ − CoVaRY |X=VaRX0.5

γ , (3)

measuring the shift in the conditional Y -quantile, in response of a change in X from the

median to the γ-th quantile.

2.2. Nonparametric CoVaR (NCoVaR)

We first intrduce the nonparametric extension of ∆CoVaR, called ∆NCoVaR. It is con-

ceptually closely related to CoVaR, but we focus on conditional tail event probabilities rather

than conditional quantiles, and on nonparametric estimation rather than parametric.

Let A denote a set of extreme events for Y , such as Y being near a given unconditional tail

quantile yγ ≡ VaRY
γ , and C and D sets of events where X is either near a given unconditional

tail quantile (xγ) of X or near its unconditional median (x0.5). To make this explicit, we
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consider the intervals

A = [yγ − µ, yγ + µ],

C = [xγ − µ, xγ + µ],

D = [x0.5 − µ, x0.5 + µ],

for some positive parameter µ. Then we can quantify the effect of a change in X from region

C to D on the tail event probability of Y by defining

∆NCoVaR = P(Y ∈ A|X ∈ C)− P(Y ∈ A|X ∈ D).

The advantage of focusing on probabilities of events rather than on quantiles is that, as

we will show next, this allows for natural nonparametric estimation using U-statistics, for

which asymptotic theory is readily available. From the definition of ∆NCoVaR, we obtain

∆NCoVaR = P (Y ∈ A|X ∈ C)− P (Y ∈ A|X ∈ D)

=
P (Y ∈ A,X ∈ C)

P (X ∈ C)
− P (Y ∈ A,X ∈ D)

P (X ∈ D)
.

The null hypothesis of no (instantaneous) NCoVaR relation of the variable X on the

tail probability of Y , implies that ∆NCoVaR = 0 for all events A, C and D for which

P (X ∈ C) > 0 and P (X ∈ D) > 0. Upon multiplication by P (X ∈ D) P (X ∈ C), H0 can

be seen to imply

q ≡ P (Y ∈ A,X ∈ C) P (X ∈ D)− P (Y ∈ A,X ∈ D) P (X ∈ C) = 0,

which then is, in fact, also defined in cases where P (X ∈ C) and/or P (X ∈ D) happen to

be zero. Note that equivalently, we may write H0 as

q = E [IA×C(Y1, X1)ID(X2)− IA×D(X1, Y1)IC(X2)] = 0,

for two vectors (X1, Y1) and (X2, Y2), drawn independently from the joint distribution of
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(X, Y ).

Given a sample of the process {(Xt, Yt)}, t = 1, . . . , n, a natural frequency count-based

estimate of q is

qn = 1
n(n−1)

∑∑
6̀=k

[IA×C(Yk, Xk)ID(X`)− IA×D(Yk, Xk)IC(X`)] .

To develop asymptotics, define Wt = (Xt, Yt) and write the estimator as a weighted average

of a symmetric kernel function (as a U-statistic)

qn =
1

n(n− 1)

∑∑
k 6=`

K(Wk,W`),

where K(Wk,W`) is the symmetric (w.r.t. swapping Wk and W`) kernel function

K(Wk,W`) =
1

2
[IA×C(Yk, Xk)ID(X`)− IA×D(Yk, Xk)IC(X`) + `↔ k] ,

where ` ↔ k stands for similar terms with ` and k swapped. This shows that qn is in fact

a U-statistic estimator of q = E(K(Wi,Wj)), (where Wi and Wj are drawn independently

from the stationary distribution of W ). Although in a time series process the observed

vectors Wt, t = 1, . . . , n are not independent, as long as the time series {Wt} is stationary

and satisfies some rather mild mixing conditions, the asymptotic theory of U-statistics still

apply, provided that a HAC estimator of variance is used (Denker and Keller, 1983, 1986).

This leads to the following theorem.

Theorem 1. Consider a sample {Wt}nt=1 from bivariate random process {Wt} ≡ {(Xt, Yt)}

with t ∈ Z that is strictly stationary and β-mixing with exponential decay rate. Then for the

kernel function K(·, ·) as defined above, for fixed A, C and D,

√
n
qn − q
Sn

d−→N(0, 1),
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where S2
n is a heteroskedasticity and covariance consistent (HAC) estimator of the asymptotic

variance of
√
n(qn − q).

The proof of Theorem 1 is provided in Appendix A.

The present definition of NCoVaR focuses on extreme losses equal to, or µ-near, a given

tail quantile, rather than above this quantile, which is the case considered more often in

the literature. The background of this choice is historical, as we were initially thinking of

NCoVaR in terms of densities near given tail quantiles. If desired, the test can be readily

adjusted by changing the events A (and/or C and D) to the regions above a certain quan-

tile rather than µ-close to them, without affecting the validity of the proof of asymptotic

normality. To anticipate on this possibility we performed numerical size and power compar-

isons (shown in Appendix E due to space considerations) for such an alternative setup. For

commonly-used quantiles, such as γ = 0.95 or γ = 0.99, the results indicate that the test

as introduced here actually offers comparable or better power, depending on the simulation

setup.

2.3. CoVaR Granger causality

In Granger causality testing, the goal is to find evidence against the null hypothesis of

Granger non-causality, defined as follows.

Definition 1 (Granger non-causality (bivariate)). For a strictly stationary bivariate time

series process {(Xt, Yt)}, t ∈ Z, {Xt} does not Granger cause {Yt} if, for all k ≥ 1,

(Yt+1, . . . , Yt+k)|(FX,t,FY,t) ∼ (Yt+1, . . . , Yt+k)|FY,t,

where FX,t and FY,t are information sets spanned by Xs, s ≤ t and Ys, s ≤ t, respectively.

For now, we focus on k = 1 lag. Following Diks and Panchenko (2006) and Diks and Wol-

ski (2016) one can represent the null hypothesis of Granger non-causality in terms of equality

of conditional probabilities. Throughout we assume that the process {(Xt, Yt), t ∈ Z} is
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strictly stationary and β-mixing with exponential decay rate. For the ease of notation we

introduce the lead variable Zt = Yt+1. In this notation the null hypothesis is a statement

about the invariant distribution evaluated at conditional quantile levels of the 3-dimensional

vector Wt = (Xt, Yt, Zt). For clarity, since the null hypothesis concerns the invariant dis-

tribution of Wt, in formulating the null hypothesis we often drop the time index and refer

simply to the distribution of the random variable W = (X, Y, Z).

Under the null hypothesis of Granger non-causality X and Z are conditionally indepen-

dent given Y = y∗, where y∗ is a given unconditional quantile of Y . Consequently, the

Granger causality setting adds an additional conditioning event relative to NCoVaR. We can

either address this using quantile regression, leading to an extension of CoVaR to CoVaR

Granger causality, or nonparametrically, giving rise to NCoVaR Granger causality.

CoVaR Granger causality is based on quantile regression, but we now consider quantiles

of Z, being the future Y -variable, instead of Y . In that context the null hypothesis H0

implies that the conditional quantiles of Z are independent of X given Y , or, the conditional

quantiles of Z|X = x, Y = y and Z|Y = y are the same for all (x, y) in the support of

(X, Y ).

Note that unlike CoVaR, CoVaR Granger causality is directional, i.e. the effect of X on

future values of Y need not be the same as that of Y on future X-values. As such it is a

measure of Granger causality from one variable to another. This stands in great contrast

with linear CoVaR, which essentially depends on the instantaneous correlation between two

variables, and hence is inherently symmetrical.

2.4. NCoVaR Granger causality

The null hypothesis is Granger non-causality, i.e. for (X, Y, Z) ∼ (Xt, Yt, Yt+1) under the

null hypothesis H0 vectors X and Z are conditionally independent given Y . The same as

with NCoVaR, we take a nonparametric approach, starting by considering events where Z
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is in of A, and X in C and/or D, where now

A = [zγ − µ, zγ + µ]

C = [xγ − µ, xγ + µ]

D = [x0.5 − µ, x0.5 + µ].

The null hypothesis implies (see Appendix B)

P (Z ∈ A,X ∈ C|Y = y)

P (X ∈ C|Y = y)
=
P (Z ∈ A,X ∈ D|Y = y)

P (X ∈ D|Y = y)
, ∀A,C,D, y.

The analogy with NCoVaR above now suggests testing the implication of the null hypothesis

H ′0 : P (Z ∈ A,X ∈ C|Y = y∗)P (X ∈ D|Y = y∗)

−P (z ∈ A,X ∈ D|Y = y∗)P (X ∈ C|Y = y∗) = 0,

for a given past Yt value y∗ (e.g. some unconditional Y -quantile) and given A, C and D. For

instance P (X ∈ D|Y = y∗) is now estimated by counting the frequency of events X ∈ D,

among the vectors close to y∗.

A natural estimator for P (X ∈ D|Y = y∗) is the Nadaraya-Watson nonparametric re-

gression function estimator

̂P (X ∈ D|Y = y∗) =
1
n

∑n
k=1 ID(Zk)Kh(y∗ − Yk)
1
n

∑n
k=1Kh(y∗ − Yk)

, (4)

where we take Kh(·) to be a density estimation kernel. Although the theory holds more

general, in the simulations and applications presented herein we focus on the Gaussian

kernel

Kh(s) =
1√
2πh

exp(−s2/(2h2)),

and its associated higher-order kernels (see e.g. Hansen, 2009). Note that the denominator in

Eq. (4), which is preventing us from writing it as a U-statistic, is just a kernel density estimate
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of fY (y∗). We can get rid of the denominator and obtain simple U-statistics estimates2 if we

multiply the probabilities by fY (y∗). Therefore, for a given unconditional quantile y∗ of Y

we define

q∗ = f 2
Y (y∗) (P (Z ∈ A,X ∈ C|Y = y∗)P (X ∈ D|Y = y∗)

−P (z ∈ A,X ∈ D|Y = y∗)P (X ∈ C|Y = y∗)) .

By construction, q∗ = 0 under H0. Now the term

fY (y∗)P (X ∈ D|Y = y∗)

e.g. can be simply estimated as

1

n

n∑
k=1

ID(Xk)Kh(y∗ − Yk).

The corresponding U-statistic kernel used for estimation of q∗ is

K(Wk,W`;h) = 1
2

[IA(Zk)IC(Xk)Kh(y∗ − Yk)ID(X`)Kh(y∗ − Y`)

−IA(Zk)ID(Xk)Kh(y∗ − Yk)IC(X`)Kh(y∗ − Y`)

+k ↔ `] ,

(5)

where ‘k ↔ `’ represents the same terms with k and ` swapped and Kh(w) = h−1K(w/h) a

scaled version of the kernel function K(w), satisfying

∫
|K(w)|dw <∞,

∫
K(w)dw = 1 and |wK(w)| → 0 as |w| → ∞. (6)

The next theorem states that the U-statistics estimator of q∗, given by

q∗,n =
1

n(n− 1)

∑∑
`6=k

K(Wk,W`;h),

2Note that we slightly abuse language here. Strictly speaking, we should call the resulting estimators
sample averages of kernel functions rather than U-statistics, since they are only asymptotically unbiased.
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is asymptotically normally distributed provided that the bandwidth h = hn tends to zero

with n at an appropriate rate.

Theorem 2. Consider a strictly stationary bivariate random process {(Xt, Yt)} with t ∈ Z.

Then for given the events A, C and D, and Y -quantile y∗, for a kernel density bandwidth

parameter tending to zero at an appropriate rate

√
n
q∗,n − q∗
S ′n

d−→N(0, 1),

where S ′2n is a consistent (HAC) estimator of the asymptotic variance of
√
n(q∗,n − q∗)

The proof of Theorem 2 is provided in Appendix C. Here by an ‘appropriate’ rate for

the bandwidth to tend to zero, we mean that in the derivation of asymptotic normality we

let the bandwidth tend to zero as hn = cn−β, with an appropriate fixed rate β. This rate

should satisfy a number of conditions depending on the density estimation kernel order and

the dimension of W . For a second-order (α = 2) density estimation kernel, and dY = 1 (first

Markov-order bivariate), we find that β ∈ (1
4
, 1
2
) with MSE-optimal rate β = 1

3
. See Appendix

C for details.

2.5. Optimal bandwidth selection

By minimising the MSE of q∗,n we can, in addition to the MSE optimal bandwidth rate

β, also find the asymptotically optimal value of c in the sequence hn = cn−β. Unfortunately,

this optimal value of c will be not independent of the data generating process assumed.

Nevertheless it will be instructive to find the optimal values of c for a number of commonly

considered processes, to get an estimate the order of magnitude of the MSE optimal value of

c in these cases. Recall that asymptotically c is not relevant to achieve asymptotic normality,

and even β isn’t, as long as it is in the appropriate range, but for finite sample sizes it is

preferable to use values for β and c that are motivated by optimality arguments, even if for

somewhat stylised processes that are only approximations to the real unknown DGP.
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Naturally, it is impossible to consider all possible DGPs. Moreover, not for all assumed

DGPs it is possible to numerically calculate MSE optimal bandwidths. We here restrict

attention to VAR and ARCH models, as these represent common DGPs allowing for linear

dependence in the first and second conditional moment, respectively.

An alternative approach would be to apply cross-validation techniques to calculate op-

timal data-driven bandwidths (Li and Racine, 2008, 2013). Due to stochasticity of mini-

mization algorithms in small samples, such methods can lead to power losses in the context

of hypothesis testing. Nevertheless, we consider them as an interesting avenue for future

research.

Vector AR (VAR) model. As shown in Appendix D, in the context of a specific linear VAR

model with normal innovations we find an optimal bandwidth for, for instance γ = 0.95 and

µ = 0.8, equal to

h
AR(1)
opt = 3.07× n−1/3,

after standardizing the data to zero mean and unit variance and choosing the dependence

parameter a equal to 0.4.

ARCH model. In the ARCH model context the bias is of a lower order in the kernel band-

width, so the optimal bandwidth also has a different rate. We obtain, again for dependence

parameter value a = 0.4, γ = 0.95 and µ = 0.8,

h
ARCH(1)
opt = 2.14× n−1/5,

after standardizing the data to zero mean and unit variance. For more details and for other

values of µ and γ we refer to Appendix D.

Although the optimal bandwidths presented here were obtained for very specific pro-

cesses, they might help in practice to give an idea of the order of magnitude of the optimal
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bandwidth in empirical applications. Specifically, we propose to use h
AR(1)
opt in case there may

still be VAR dependence in the time series, and h
ARCH(1)
opt in cases where VAR structure has

been removed by filtering using a VAR model.

2.6. Extensions to higher order processes and/or confounding variables

Most of the remarks above concern the bivariate case, with Markov order k = 1 lag and

density estimation kernel order α = 2. Adding more conditional variables, such as lagged

Y -variables or possibly confounding variables puts additional restrictions on the feasible

bandwidth rates (β-values). Mathematically, extra lagged Y -values or additional variables

can be added to the conditioning variable Y , in W = (X, Y, Z), when testing whether X

and Z are conditionally independent given Y . The increase of the dimension of Y places

additional conditions on the feasible rates β at which hn can tend to zero without letting

the bias or the variance of q∗,n dominate asymptotically. Specifically, α and dY put the

restrictions 1
2α

< β < 1
2dY

, on β. Note that for the usual second order density estimation

kernels, which have α = 2, there are already no feasible rates β as soon as we increase the

dimension dY of Y from 1 to 2, e.g. by adding a single extra lag of Yt or the first lag of a

possible extra, confounding, variable, Vt, say.

When addressing this issue, one has a choice between Data Sharpening (DS) on one hand,

and the use of higher order kernels on the other. Both these methods reduce the order of

the bias, opening up some room for the bandwidth to tend to zero slower, and hence reduce

the variance. However, there is a huge practical difference between these methods, in that

higher order kernels require only a single bandwidth to be considered, while in DS there is

one bandwidth for the data sharpening step and another for the estimation step, and these

need to be carefully adjusted to each other. For instance, as noted by Diks and Wolski (2016)

the DS bandwidth should go to zero at a slower rate than the density estimation bandwidth,

to make sure that the gradient of the density is estimated consistently. Therefore, in this

study we decided to use higher-order kernels rather than DS when Y is multivariate. In the

case described above, with dY = 2, using a 4th-order (α = 4) kernel provides a range of
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feasible β-values, β ∈ (1
8
, 1
4
).

Formally, if we denote the vector of extra conditioning variables by V , one can represent

the null hypothesis of the multivariate NCoVaR as

P(Y ∈ A|X ∈ C, V = v∗) = P(Y ∈ A|X ∈ D, V = v∗),

and for multivariate NCoVaR Granger causality as

P (Z ∈ A,X ∈ C|Y = y∗, V = v∗)

P (X ∈ C|Y = y∗, V = v∗)
=
P (Z ∈ A,X ∈ D|Y = y∗, V = v∗)

P (X ∈ D|Y = y∗, V = v∗)
.

The latter equation illustrates explicitly that adding extra control variables to condition on

is mathematically equivalent to increasing the dimension of the conditioning variable Y .

3. Size/power simulations

To compare the parametric and nonparametric methods, we measure their ability to

detect given dependency structures between variables. Our strategy is to simulate processes

with stylized transmission channels and to verify statistical power of both methodologies.

Since CoVaR and NCoVaR focus on instantaneous dependence, whereas CoVaR Granger

causality and NCoVaR Granger causality considers Granger-type dependence, for the former

we simulate processes with simultaneous and for the latter with lagged dependence. We

then benchmark the results against standard and lagged parametric CoVaR specifications,

respectively.

As argued by Adrian and Brunnermeier (2016), ∆CoVaR can be estimated as ∆CoVaR =
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β̂iγ(VaRi
γ − VaRi

0.5), where β̂iγ comes from the quantile regression3

Ŷγ
j|X

= α̂iγ + β̂iγX, (7)

where Ŷγ
j|X

is the predicted value for γ-quantile of institution j conditional on a return

realization X of institution i. In fact, variable β̂iγ captures the tail dependence between the

institutions and is the core variable of interest for our further investigation. Under standard

distributional assumptions, the estimated coefficient follows a Student’s t-distribution with

n − 2 degrees of freedom. The statistical significance of β̂iγ is therefore a direct measure to

assess the size and power of the parametric approach. Furthermore, to correct for possible

heteroskedasticity we estimate the t-statistics for β̂iγ with robust standard errors.

We carry out a one-sided t-test where under the null H0 : β̂iγ ≤ 0 and under the alternative

Ha : β̂iγ > 0, to make the test size directly comparable with our further investigation.

To construct CoVaR estimates for lagged dependency structure, we adjust the lag com-

position of Eq. (7) to match Definition 1. Besides, the testing framework follows the same

principles as described above.

We consider two groups of processes, highlighting the dependence in the first and sec-

ond conditional moments of the random variables. These processes have been widely used

as simulation benchmarks and therefore constitute a natural testing environment (see Li

and Racine (2007) or Diks and Wolski (2016)). One could also focus on a combination

of both types of dependencies simultaneously, as for instance Rothe (2010). However, as

we demonstrate later, the sensitivity of parametric and nonparametric methods is vastly

different across these two groups of processes. We therefore consider them separately.

3An alternative approach would be to estimate ∆CoVaR via a multivariate GARCH model. Under the
Gaussian case, the main difference between two techniques is that whereas in the quantile regression case
the estimate is proportional to the overall correlation between variables, the multivariate GARCH estimate
is proportional to the instantaneous correlation. Consequently, neither method can capture the dependency
structure which is not related to correlation, which builds an argument for the nonparametric extensions
proposed herein.
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3.1. Dependence in the first conditional moment

To give an example of a data-generating process with causality in mean, consider the

linear bivariate Vector Autoregressive model of order 1 (VAR(1)) given by

xt = axt−1 +
√

1− a2ε1,t,

yt = axt−τ +
√

1− a2ε2,t,
(8)

where a ∈ (0, 1) is a tuning parameter and ε1,t and ε2,t represent i.i.d. zero-mean innovations.

We restrict the parameter a to be within the unit interval to guarantee that the process is

stationary. The process is designed so that the causality runs from X to Y , which constitutes

a foundation for power assessment. For the size assessment we use the same process, but

switch the causality from Y to X, so that the null hypothesis of non-causality holds.

The subscripts denote the time dimension. Here we make an important distinction be-

tween instantaneous and lagged dependence spillovers or, by a slight abuse of terminology,

‘instantaneous’ and ‘standard’ Granger causality. By adjusting the dependence lag struc-

ture, we match the timing of the data generating process to (N)CoVaR (Granger causality)

measures, providing an appropriate testing framework for each. In particular, we set τ = 0

for ‘instantaneous’ Granger causality to assess the size and power of CoVaR and NCoVaR.

We investigate the properties of the CoVaR and NCoVaR Granger causality-based tests on

the process with lagged dependence, i.e. τ = 1.

For the simulations we set a = 0.4 and run 1000 independent realizations of the process

in Eq. (8), after a burn-in period of 100 time steps. Sample size-dependent bandwidths are

set at the calculated MSE-optimal value and the fixed-range parameter is set at µ = 0.8,

as this seems to provide consistently good size and power properties (for comparison see

Appendix F).

The results for the former are presented in Fig. 1, whereas for the latter in Fig. 2.

Estimations focus on the risky quantile of γ = 0.95. The results for γ = 0.99 and for above-

quantile specification are given in Appendix E. However, since for smaller samples standard
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errors cannot be estimated consistently, the results comprise larger samples. The detailed

results for selected nominal size levels are additionally summarized in Table 2.
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(d) Size-power plot

Figure 1: CoVaR and NCoVaR performance in VAR class of models. Size-size and size-power plots for

different sample sizes generated under process in Eq. (8) with instantaneous dependence (τ = 0). The

quantile at which the risk is defined is set to γ = 0.95. The fixed-range parameter is set to µ = 0.8. The

results are aggregated over 1000 simulations.
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NCoVaR Granger causality

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Size

R
ej

ec
tio

n 
ra

te
s

n=100
n=200
n=500
n=1000

(c) Size-size plot

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Size

R
ej

ec
tio

n 
ra

te
s

n=100
n=200
n=500
n=1000

(d) Size-power plot

Figure 2: CoVaR and NCoVaR Granger causality performance in VAR class of models. Size-size and size-

power plots for different sample sizes generated under process in Eq. (8) with lagged dependence (τ = 1).

The quantile at which the risk is defined is set to γ = 0.95. We apply the MSE-optimal bandwidth and we

set the fixed-range parameter to µ = 0.8. The results are aggregated over 1000 simulations.
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Table 2: Performance summary of CoVaR and NCoVaR methodologies in VAR class of models for selected

nominal size levels (α). Actual rejection rates under X → Y causality (power) and Y → X causality (size)

for different sample sizes (n), generated under process in Eq. (8) with instantaneous dependence (τ = 0) and

with lagged dependence (τ = 1). The quantile at which the risk is defined is set to γ = 0.95. We apply the

MSE-optimal bandwidth and we set the fixed-range parameter to µ = 0.8. The results are aggregated over

1000 simulations.

Instantaneous dependence Granger causality

α n size power size power

CoVaR NCoVaR CoVaR NCoVaR CoVaR NCoVaR CoVaR NCoVaR

0.01 100 0.395 0.147 0.462 0.142 0.053 0.007 0.511 0.087

200 0.621 0.391 0.625 0.374 0.024 0.004 0.681 0.186

500 0.976 0.850 0.972 0.831 0.016 0.002 0.979 0.432

1000 1.000 0.991 1.000 0.990 0.030 0.003 1.000 0.702

0.05 100 0.610 0.394 0.633 0.397 0.100 0.037 0.698 0.289

200 0.837 0.661 0.825 0.675 0.070 0.035 0.857 0.473

500 0.998 0.957 0.997 0.953 0.058 0.034 0.999 0.730

1000 1.000 1.000 1.000 1.000 0.074 0.042 1.000 0.908

0.1 100 0.734 0.560 0.741 0.567 0.141 0.081 0.789 0.468

200 0.907 0.803 0.904 0.803 0.115 0.098 0.923 0.648

500 0.999 0.979 0.999 0.983 0.114 0.095 1.000 0.849

1000 1.000 1.000 1.000 1.000 0.130 0.078 1.000 0.958

There are three main observations that can be made based on this experiment. Firstly,

the instantaneous CoVaR and NCoVaR measures seem to be bi-directional, whereas the

Granger causality-based specifications are sensitive to the direction of causality. Regarding

the former, we note that Adrian and Brunnermeier (2016) consider such a property a virtue,

as the methodology captures the co-risk effects between variables. Our numerical exercise

confirms this feature for both CoVaR and NCoVaR measures.

Secondly, regarding the Granger causality measures, it seems that parametric estima-

21



tion modestly over-rejects under the null, i.e. the methodology finds evidence for CoVaR

Granger causality too often when it is actually absent. This over-rejection is confirmed for

conventional nominal size levels and doesn’t seem to diminish with increasing sample size

(see Table 2). On the contrary, NCoVaR Granger causality displays much more conservative

size properties.

Thirdly, for the VAR(1) process we find a considerable power gain for CoVaR relative

to NCoVaR in small samples for the γ = 0.95 quantile. The differences evaporate as the

sample size increases and the instantaneous NCoVaR converges faster in power than the

Granger causality setup. There are several possible reasons for these results. As confirmed

by Rothe (2010), parametric models are characterized by higher efficiency (in terms of MSE)

for correctly specified models. Our simulation setup assumes the simplest process dynamics,

which corresponds to the model specifications. Secondly, the strong power of CoVaR can

be partially driven by its over-rejection bias, at least to some extent. Thirdly, the slower

convergence for NCoVaR Granger causality can be attributed to the ‘curse of dimensionality’,

i.e. less precise estimates in higher dimensions. There are several possible remedies to this

problem, including data sharpening, principal components, projection pursuit or informative

components analysis (Scott, 1992; Hall and Minnotte, 2002). This topic is, however, beyond

the scope of this paper and we leave it for further investigation.

We also find the interesting pattern that for the same sample size estimation at more risky

quantiles, i.e. γ = 0.99, yields superior statistical power for both CoVaR and NCoVaR, with

marginal effects on the size (see Table E2 in Appendix E). Points around more aggressive

quantiles contain clearer evidence against the null hypothesis. Nevertheless, due to data

scarcity for smaller data sets estimation at less conservative quantiles may be preferred.

3.2. Dependence in the second conditional moment

The second-moment dependence is analysed through a prism of a class of (Generalized)

Autoregressive Conditional Heteroskedasticity ((G)ARCH) models. In particular, we focus

on a stylized bi-variate (G)ARCH process with (possibly lagged) volatility spillovers from
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{Xt} onto {Yt} of the form

Xt ∼ N(0, 1),

Yt ∼ N(0, 1 + aX2
t−τ ),

(9)

where a > 0 is again tuning parameter and N(0, σ2) denotes the zero-centred normal distri-

bution with variance σ2.

The nomenclature and testing procedure are the same as for the VAR(1) process described

in Section 3.1. In the simulations we set a = 0.4 and we focus on a risky quantile of γ = 0.95.

(Results for γ = 0.99 are provided in Appendix E.) The size-size and size-power plots are

shown in Figs 3 and 4. The corresponding detailed results for selected nominal size levels

can be found in Table 3.
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Figure 3: CoVaR and NCoVaR performance in (G)ARCH class of models. Size-size and size-power plots

for different sample sizes generated under process in Eq. (9) with instantaneous dependence (τ = 0). The

quantile at which the risk is defined is set to γ = 0.95. The fixed-range parameter is set to µ = 0.8. The

results are aggregated over 1000 simulations.

24



CoVaR Granger causality

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Size

R
ej

ec
tio

n 
ra

te
s

n=100
n=200
n=500
n=1000

(a) Size-size plot

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Size

R
ej

ec
tio

n 
ra

te
s

n=100
n=200
n=500
n=1000

(b) Size-power plot

NCoVaR Granger causality
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Figure 4: CoVaR and NCoVaR Granger causality performance in (G)ARCH class of models. Size-size and

size-power plots for different sample sizes generated under process in Eq. (9) with lagged dependence (τ = 1).

The quantile at which the risk is defined is set to γ = 0.95. We apply the MSE-optimal bandwidth and we

set the fixed-range parameter to µ = 0.8. The results are aggregated over 1000 simulations.
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Table 3: Performance summary of CoVaR and NCoVaR methodologies in (G)ARCH class of models for

selected nominal size levels (α). Actual rejection rates under X → Y causality (power) and Y → X causality

(size) for different sample sizes (n), generated under process in Eq. (9) with instantaneous dependence (τ = 0)

and with lagged dependence (τ = 1). The quantile at which the risk is defined is set to γ = 0.95. We apply

the MSE-optimal bandwidth and we set the fixed-range parameter to µ = 0.8. The results are aggregated

over 1000 simulations.

Instantaneous dependence Granger causality

α n size power size power

CoVaR NCoVaR CoVaR NCoVaR CoVaR NCoVaR CoVaR NCoVaR

0.01 100 0.023 0.006 0.042 0.008 0.042 0.002 0.061 0.008

200 0.018 0.027 0.020 0.024 0.026 0.004 0.025 0.017

500 0.018 0.078 0.017 0.066 0.029 0.000 0.025 0.022

1000 0.009 0.146 0.018 0.120 0.015 0.005 0.011 0.065

0.05 100 0.061 0.080 0.088 0.086 0.096 0.028 0.129 0.070

200 0.043 0.118 0.062 0.116 0.066 0.026 0.073 0.109

500 0.045 0.235 0.062 0.229 0.086 0.029 0.063 0.158

1000 0.045 0.363 0.063 0.324 0.066 0.043 0.060 0.240

0.1 100 0.114 0.176 0.139 0.169 0.150 0.070 0.174 0.141

200 0.084 0.220 0.096 0.211 0.106 0.072 0.129 0.207

500 0.084 0.381 0.115 0.351 0.141 0.071 0.107 0.290

1000 0.091 0.505 0.105 0.485 0.108 0.083 0.117 0.380

The experiments on the (G)ARCH process confirm the first two findings reported in

Section 3.1, i.e. the bi-directionality of the CoVaR and NCoVaR measures, and the over-

rejection bias of CoVaR Granger causality, although the latter seems to somehow contained.

Regarding the power results, parametric CoVaR estimation is unable to detect the volatility

spillovers generated by process in Eq. (9), irrespective of the sample size. On the contrary,

NCoVaR and NCoVaR Granger causality still capture this type of dependence, however, the

power is considerably subdued compared to the VAR experiments.
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The poor performance of CoVaR measures in (G)ARCH environment can be explained

by its methodological design. As argued by Mainik and Schaanning (2014), CoVaR is a

correlation-driven measure. Having pointed this out, it misses any type of dependence in

the higher moments of the conditional variable distributions. To put it pragmatically, β̂iγ

estimates capture the average linear quantile effects between the variables of interest. In

the case of (G)ARCH (or volatility spillovers) processes, the left-tail effects are offset by

the right-tail equivalents, on average, which escalates the standard errors and reduces the

statistical power of the method. Under such circumstances, NCoVaR provides a robust

estimation alternative.

4. Empirical illustration

To demonstrate the performance of NCoVaR and NCoVaR Granger causality we choose

the Euro Area (EA) financial environment. In particular, we investigate the so-called feed-

back loops (after Ohnsorge et al. (2014)), between sovereigns and banks in selected EA

Member States. Feedback loops are of particular importance for policy makers and regula-

tors as they serve as a shock transmission channel during distress times. Banks, as important

sovereign debt holders, are directly exposed to debt valuation and sovereign risk. Should

a sovereign be under distress banks might be required to increase capital buffers or take a

haircut. On the other side, sovereigns are implicit guarantors of the banking sector and they

took a huge hit on their debt accounts during the financial and subsequent sovereign debt

crises. In essence, the prices of both instruments showed a high degree of co-movement in

the recent history across different parts of the Europe (Caporin et al., 2012).

The data used in the empirical analysis covers seven countries, i.e. two so-called core

EA Member States: Germany and France, and five vulnerable EA Member States: Spain,

Portugal, Italy, Ireland and Greece. The Sovereign Price Index (SPI) is calculated from the

price-yield relation of a 1-year zero-coupon bond, on the basis of a generic 1-year sovereign

bond yield for each country. The Banking Price Index (BPI) is taken as the FTSE banking
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price index for each country. SPI come from Bloomberg and BPI come from Datastream. The

missing observations are interpolated using linear interpolation technique but the results fully

hold when excluding the missing values. We focus on daily observations between January

1994 and September 2016, however, due to data availability the precise ranges differ across

countries. The exact coverage together with basic summary statistics are depicted in Table 4.

Table 4: Summary statistics of the data used in the empirical analysis. Banking prices are taken from the

FTSE Banking Price Index (BPI) and the Sovereign Price Index (SPI) is calculated from 1-year zero-coupon

bonds of corresponding countries. Source: Bloomberg and Datastream.

Sector Country Obs. Sample period Mean St. Dev. Min. Max.

BPI Germany 5932 Jan-1994/Sep-2016 125.9 62.3 23.6 267.4

France 5932 Jan-1994/Sep-2016 208.3 93.8 69.9 506.7

Spain 5932 Jan-1994/Oct-2016 359.9 146.2 109.6 704.1

Portugal 4244 Apr-1998/Aug-2014 151.5 94.3 3.1 373.7

Italy 5932 Jan-1994/Oct-2016 158.6 86.1 32.0 352.6

Ireland 5932 Jan-1994/Oct-2016 670.5 617.7 7.9 2279.0

Greece 4803 May-1998/Oct-2016 622.3 495.3 0.3 1713.8

SPI Germany 5932 Jan-1994/Sep-2016 976.6 17.0 942.7 1007.0

France 4803 May-1998/Sep-2016 980.1 15.9 949.7 1006.2

Spain 4803 May-1998/Oct-2016 975.9 13.9 939.5 1002.4

Portugal 4803 May-1998/Oct-2016 968.5 25.4 818.0 1001.3

Italy 4694 Oct-1998/Oct-2016 976.2 14.0 924.5 1002.1

Ireland 4803 May-1998/Oct-2016 971.2 18.6 855.0 1004.7

Greece 4215 Aug-2000/Oct-2016 936.0 101.4 222.8 989.5

The data delivers interesting first-touch evidence on the nature of sovereign and banking

sectors in the sample. Firstly, BPIs of Germany, France, Portugal and Italy are have, on

average, lower valuations and volatility than the ones in Spain, Ireland and Greece. In fact,

Germany is characterized by the lowest average in-sample price and standard deviation, with
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Ireland having the highest values on both statistics.

Looking at the SPIs, the average debt valuations look, on average, similar, with the

exception of Greece, with bonds traded at more than double-the-average discounts. Inter-

estingly, Greece was the only country in the sample, for which the yields never marked the

negative territory, and were the most volatile.

In the empirical analysis, to guarantee the stationarity of the time series, we look at the

log returns of respective variables. We also standardize the data magnitude by the standard

normal transformation. The fixed-bandwidth are set to µ = 0.8 and the size-dependent

window is chosen as indicated for the VAR(1) process. (The results are largely robust to

different parametrization.)

The goal of the exercise is to quantify the sovereign-bank feedback loops on the sample

countries and to compare the NCoVaR and NCoVaR Granger causality estimates against

their parametric CoVaR equivalents. The main results for γ = 0.95 are depicted in Table 5.4

4The results for γ = 0.99 are largely in line but their statistical significance is weaker. For transparency
reasons we do not report them in this paper but they are available from the authors upon request.

29



Table 5: Bank-sovereign feedback loops in selected euro area countries. BPI and SPI denote the Banking

Price Index and Sovereign Price Index, respectively. Columns CoVaR and NCoVaR denote the instantaneous

specifications, whereas columns CoVaR Gc and NCoVaR Gc correspond to Granger causality setups. ***, **,

** denote 1%, 5% and 10% significance levels. For nonparametric NCoVaR and NCoVaR Granger causality

tests we set µ = 0.8. Risky quantiles are estimated at γ = 0.95.

CoVaR NCoVaR CoVaR Gc NCoVaR Gc

X Y X → Y Y → X X → Y Y → X X → Y Y → X X → Y Y → X

Germany BPI SPI ***

France BPI SPI ***

Spain BPI SPI *** ** *** *** ** *** **

Italy BPI SPI *** *** ** *** *** *

Portugal BPI SPI *** *** *** ***

Ireland BPI SPI *** ***

Greece BPI SPI *** ** ***

It can be readily observed that the NCoVaR estimates are somehow more conservative

than the CoVaR estimates. This finding holds for both quantile specifications as well as across

the variables and countries. In fact, this evidence is in line with our numerical conclusion

that the linear CoVaR framework over-rejects under the null. Looking at the results, the

size of overrejection is quite substantial. They strongly suggest CoVaR Grange causality

spillovers from sovereign onto banks in all sample countries, with moderate support from

NCoVaR Granger causality only in the case of Spain and Italy. Consequently, we consider

the CoVaR Granger causality results to be inconclusive.

Looking at the instantaneous NCoVaR results, we find evidence for feedback loops in

Spain and risk spillovers from sovereigns onto banks in Italy. NCoVaR Granger causality

results appear to confirm the directional dependence from sovereigns onto banks in both

countries, however, the spillovers from banks onto sovereigns in Spain disappear.

The parametric CoVaR results largely support the findings of simultaneous NCoVaR,

suggesting also further bi-directional effects in Portugal and bank-to-sovereign spillovers in
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Greece. Overall, with the exception of Ireland, the exercise confirms the differences in bank-

sovereign feedback loops between vulnerable and core EA countries (Ohnsorge et al., 2014).

4.1. Extra controls

As a robustness check we tests whether the nonlinear dependencies between banks and

sovereigns found above can be explained by potential common-factor effects. As pointed

out in Section 2.6, Theorems 1 and 2 require higher-order kernel smoothing and slower con-

vergence rate of the bandwidth. In our example, we take the 4th-order Gaussian kernel,

allowing to include two extra conditioning variables, which makes the bandwidth rates equal

to n−1/6 for NCoVaR and n−1/7 for NCoVaR Granger causality. We take the bandwidth con-

stants consistently with the higher-order kernels and under the no dependence against extra

co-variates. As common-factor benchmarks, we take the daily changes of the USD/EUR

exchange rate and the STOXX Europe 600 equity index. Both time series cover the entire

time span of the main variables of interest so that the number of observations in each of the

countries fully corresponds to Table 4. The conditioning densities are evaluated around the

median of the conditioning variables, so that the results are indicative of the bank-sovereign

dependencies in the absence of substantial shocks in the extra control variables, which in our

example represent currency and equity markets.

The results are given in Table 6. The framework assumes γ = 0.95 but again the more

conservative quantiles confirm the main findings. It can be observed that both linear CoVaR

and CoVaR Granger causality vastly resembles the structure observed in the basic speci-

fication in Table 5. However, the statistical significance of dependence between variables

weakens in the nonparametric results after controlling for the confounding variables.
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Table 6: Bank-sovereign feedback loops in selected euro area countries correcting for common-factor effects.

BPI and SPI denote the Banking Price Index and Sovereign Price Index, respectively. Columns CoVaR and

NCoVaR denote the instantaneous specifications, whereas columns CoVaR Gc and NCoVaR Gc correspond

to Granger causality setups. ***, **, * denote 1%, 5% and 10% significance levels. For nonparametric

NCoVaR and NCoVaR Granger causality tests we set µ = 0.8. Risky quantiles are estimated at γ = 0.95.

CoVaR NCoVaR CoVaR Gc NCoVaR Gc

X Y X → Y Y → X X → Y Y → X X → Y Y → X X → Y Y → X

Germany BPI SPI **

France BPI SPI **

Spain BPI SPI *** *** ** *** *

Italy BPI SPI *** *** * * **

Portugal BPI SPI *** *** *** ***

Ireland BPI SPI *** ***

Greece BPI SPI *** ** ***

The cross-sectional NCoVaR measure does suggest some evidence for a bank-sovereign

feedback loop in Italy. Yet, it seems that the dynamics behind the Spanish feedback loop

discovered in Table 5 is fully captured by the information present in the extra variables.

Similarly, NCoVaR Granger causality detects weak evidence for a bank-onto-sovereign risk

spillovers in Spain when conditioning for confounding variables.

The results indicate a clear difference how the parametric and nonparametric setups

incorporate extra information from the confounding variables. It seems that the former

remains intact whereas the latter is more agile. It may be that the extra information is

present at higher moments of distribution of the confounding variables, which may be difficult

to be discovered by linear frameworks. The exact nature of this phenomenon is, however,

beyond the scope of this paper.
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5. Conclusions and discussion

NCoVaR and NCoVaR Granger causality build a new methodological framework to assess

co-risk relations, designed to capture the possible nonlinear effects. We derive the regular

asymptotic properties of the NCoVaR tests and we confirm them numerically. Importantly,

because of the use of nonparametric methods, the framework is able to capture risk depen-

dencies even in highly nonlinear environments, mimicking for instance volatility spillovers,

which the standard CoVaR methodology is unable to capture. Moreover, we demonstrate

that the CoVaR Granger causality measure is vulnerable to a false positive error, which in

the risk-management context may lead to overpriced hedge instruments.

We apply our methodology to assess the bank-sovereign co-risk relations in the Euro Area

(EA). Our findings suggest substantial differences between core and vulnerable EA countries,

as often highlighted in the literature (Ohnsorge et al., 2014; Angelini et al., 2014). The

findings are preserved when conditioning for common-factor effects, which include currency

and equity markets’ dynamics. In particular, our findings suggest substantial instantaneous

and lagged co-movement between bank and sovereign asset returns in Spain, Italy, Portugal

and Greece, with negligible effects in Germany, France and Ireland.

The NCoVaR framework can be of great use for macroprudential policy makers. Our

extensive numerical and empirical studies suggest that NCoVaR tests provide more conser-

vative estimates, compared to their parametric equivalents. In other words, standard CoVaR

estimates may overprice the co-risk relevance between given entities or asset classes, exac-

erbating their risk premia, and possibly leading to inefficient allocation of macroprudential

attention.

The novel methodology reveals some intriguing phenomena on the nonlinear nature of

the co-risk relations. A tempting idea is to investigate the underlying structures analytically

in models of the aggregate economy. Such settings would allow to capture not only the risk

contribution of relevant sectors but also measure the dynamics of aggregate disturbances.

One may also apply NCoVaR as a mapping tool and bring the risk analysis to the network
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level.
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Appendix A. NCoVaR asymptotics

First we derive asymptotic normality under the assumption that the Wt, t = 1, . . . , n, are

i.i.d. and at the end extend to the case with dependence. For the instantaneous NCoVaR

case, our test is based on

q = P (X ∈ C)P (X ∈ D) (P (Y ∈ A|X ∈ C)− P (Y ∈ A|X ∈ D))

= P (Y ∈ A,X ∈ C)P (X ∈ D)− P (Y ∈ A,X ∈ D)P (X ∈ C),

where

A = [yγ − µ, yγ + µ],

C = [xγ − µ, xγ − µ],

D = [x0.5 − µ, x0.5 + µ].

Given γ and µ, q can be estimated unbiasedly using a U-statistic of degree r = 2, with

U-statistic kernel

K(Wk,W`) = IA(Yk)IC(Xk)ID(X`)− IA(Yk)ID(Xk)IC(X`) + k ↔ `. (A.1)

The resulting estimator is unbiased and asymptotically normal by the theory of U-

statistics developed by Hoeffding (1948). Following Serfling (1980) and van der Vaart (1998),

the variance of a U-statistic Un is, up to leading orders, given by

Var(Un) '
r∑
s=1

r!2

k!(r − k)!

1

nsζs
, (A.2)

where in our case (r = 2)

ζ1 = Cov(K(W1,W2),K(W1,W
′
2) = Var(K1(Wi))

and

ζ2 = Cov(K(W1,W2),K(W1,W2)) = Var(K(W1,W2)).
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Discarding higher order terms in 1/n gives

Var(q∗,n) =
4

n
ζ1 + h.o.t

=
4

n
Var(K1(W1)) + h.o.t.

where ‘h.o.t.’ stands for higher order terms.

One finds
√
n
qn − q
Sn

d−→N(0, 1) (A.3)

where S2
n is a consistent estimator of the asymptotic variance 4Var [K1(Wt)]. In the time

series setting, under the assumption that the processes are stationary and weakly dependent,

the long-run variance of
√
n(qn − q) is given by

σ2 = 4

(
Var (K1(Wt)) + 2

∞∑
`=1

Cov [K1(Wt),K1(Wt+`)]

)
.

The term in brackets can then be estimated consistently using a HAC estimator for the

long-run variance of 2K1(Wt) (Denker and Keller 1983; 1986).

Appendix B. Logical equivalences and implications of Granger non-causality

The null hypothesis is Granger non-causality from {Xt} to {Yt}, that is H0: {Xt} 6−→

{Yt}, for one lag. Let (X, Y, Z) ∼ (Xt, Yt, Yt+1), then H0 states that X and Z are condi-

tionally independent given Y . In terms of densities and probabilities, the following logical
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equivalences and implications hold

H0 : fX,Z|Y=y(x, z|y) = fX|Y=y(x|y)fZ|Y=y(z|y), ∀x, y, z

m

fZ|X=x,Y=y(z|x, y) = fZ|Y=y(z|y) ∀x, y, z

m

fz|X=x1,Y=y(z|x1, y) = fz|X=x2,Y=y(z|x2, y) ∀x1, x2, y, z

⇓

P (Z ∈ A|X = x1, Y = y) = P (z ∈ A|X = x2, Y = y) ∀A, x1, x2, y

m

P (Z ∈ A|X ∈ C, Y = y) = P (z ∈ A|X ∈ D, Y = y) ∀A,C,D, y

m
P (Z∈A,X∈C|Y=y)
P (X∈C|Y=y)

= P (Z∈A,X∈D|Y=y)
P (X∈D|Y=y)

∀A,C,D, y

⇓

H ′0 : P (Z∈A,X∈C|Y=y∗)
P (X∈C|Y=y∗)

= P (Z∈A,X∈D|Y=y∗)
P (X∈D|Y=y∗)

for some specific A, C, D and y = y∗.

(B.1)

In the NCoVaR Granger causality context we focus on testing the implication H ′0 for a given

unconditional Y -quantile y∗, and events where X and Z fall in the sets

A = [zγ − µ, zγ + µ] (Z near tail quantile)

C = [xγ − µ, xγ − µ] (X near tail quantile)

D = [x0.5 − µ, x0.5 + µ] (X near median).

Appendix C. NCoVaR Granger causality asymptotics

Recall that for a given unconditional quantile y∗ of Y , the quantity to be estimated is

q∗ = f 2
Y (y∗) (P (Z ∈ A,X ∈ C|Y = y∗)P (X ∈ D|Y = y∗)

−P (Z ∈ A,X ∈ D|Y = y∗)P (X ∈ C|Y = y∗)) ,
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where, as motivated in Appendix B,

A = [zγ − µ, zγ + µ]

C = [xγ − µ, xγ + µ]

D = [x0.5 − µ, x0.5 + µ].

By construction, q∗ = 0 under H0, and terms like fY (y∗)P (X ∈ D|Y = y∗) can be simply

estimated as 1
n

∑n
k=1 ID(Zk)Kh(y∗ − Yk).

A U-statistic type of estimator (sample-weighted average) of q is given by

q∗,n =
1

n(n− 1)

∑
k

∑
`

k 6=`

K(Wk,W`;h),

where K(·, ·; ·) is the symmetric (with respect to interchanging k and `) kernel function

K(Wk,W`;h) =
1

2
[IA(Zk)IC(Xk)Kh(y∗ − Yk)ID(X`)Kh(y∗ − Y`)

−IA(Zk)ID(Xk)Kh(y∗ − Yk)IC(X`)Kh(y∗ − Y`)

+k ↔ `].

Note that although limh→0E(K(Wi,Wj;h)) = q∗, q∗,n is biased as estimator of q∗ for positive

bandwidth values and hence finite sample size n if the bandwidth tends to zero only in the

limit where n tends to infinity. Since q∗,n is not unbiased in finite samples, it formally is not

a U-statistic estimator of q∗. However, for a given value of the bandwidth h it nevertheless

has the same analytic form as a U-statistic, which means that it can still be interpreted as

a U-statistic estimator, not of q∗ but of q(h) ≡ E(K(Wi,Wj;h)). This property allows us

to prove asymptotic normality of q∗,n using the asymptotic theory for U-statistics, provided

that we make sure that the bias of q∗,n as an estimator of q∗ is asymptotically negligible.

Below we will consider the leading terms in the mean squared error (MSE), which can
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be decomposed as

MSE(q∗,n) = bias2(q∗,n) + Var(q∗,n),

where the first term is the squared finite sample bias of q∗,n as an estimator of q (rather

than q(h)), and the second is the finite sample variance of q∗,n, which is obtained from the

theory of U -statistics. Intuitively, provided that the bias vanishes sufficiently fast with n,

only the variance part is relevant asymptotically, and we are in the realm of U-statistics with

bandwidth-dependent sample sizes.

In order to proceed we introduce some notation. Let K1(w1;h) = E(K(w1,W2;h)),

r(w1;h) = E(K1(w1;h)) and r0(w1) = limh→0K1(w1;h). Note that E(r0(W1)) = q∗ by

construction. We follow Powell and Stoker (1996) in assuming that the underlying densities

are sufficiently regular, ensuring that the point-wise (local) bias of q∗,n (as estimator of q∗)

and the variance of the U-statistics kernel (the expectation of which is q∗(h)) behave as

K1(wi;h)− r0(wi) = s(wi)h
α + s∗(wi;h),

for some α > 0 and

Var(K(W1,W2;h)) = E((K(W1,W2;h)− q∗(h))2) = bh−γ + c∗(h),

for some γ > 0, respectively, where the remainder terms make asymptotically negligible

contributions to MSE(qn), i.e. E ((s∗(Wi;h))2) = o(h2α) and c∗(h) = o(h−γ). It is well

known that the order (α here) of the local bias of a kernel density estimate equals the

order the density estimation kernel function K. That is, α = 2 for commonly-used second-

order kernels, such as the Gaussian kernel, and α = 4, 6, . . . for higher-order kernels.

Straightforward calculations (not provided here due to space considerations, but available

from the authors upon request) show that γ = 2dY .

Using Eq. (A.2) for the variance of a U-statistic again, but now with the bandwidth-
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dependent U-statistic kernel, we have

ζ1 = Cov(K(W1,W2;h),K(W1,W
′
2;h) = Var(K1(Wi;h))

and

ζ2 = Cov(K(W1,W2;h),K(W1,W2;h)) = Var(K(W1,W2;h)).

Note that

Var(K1(W1;h)) = Var(r0(W1) + s(W1)h
α + h.o.t.)

= Var(r0(W1)) + 2Cov(r0(W1), s(W1))h
α + h.o.t.

≡ Var(r0(W1)) + 2C0h
α + h.o.t.

= Var(r0(W1)) + h.o.t.,

where ‘h.o.t.’ stands for higer order terms.

Using this we find

MSE(q∗,n) = (bias(q∗,n))2 + Var(q∗,n)

' (E(s(W1)))
2h2α +

4

n
ζ1 +

2

n2
ζ2,

' (E(S(Wi)))
2h2α +

4

n
Var(r0(Wi)) +

2

n2
bh−γ,

up to leading order, in the sense that one or more of the terms on the right hand side will

dominate asymptotically as n tends to infinity with the bandwidth h = hn decreasing to

zero exponentially according to hn = cn−β.

The first and third term on the right-hand-side correspond to the leading (squared) bias

and variance terms, which dominate when the bandwidth hn tends to zero too slow or too

fast with n, respectively. The second term does not depend on hn, and in fact corresponds

to the leading variance 4
n
ζ1 of 2

n

∑
t r0(Wt), which is a regular U-statistic of degree 1 with

kernel 2r0(W ) (in fact, r0(W ) is the Hájek projection limh→0K1(W1, h) of the kernel on the

43



data in the limit h → 0). It turns out that q∗,n is asymptotically normal with asymptotic

mean q∗ and asymptotic variance 4
n
Var(r0(Wi)) if and only if the bandwidth-independent

term 4
n
Var(r0(Wi)) dominates the MSE expansion; see Powell and Stoker (1996) for details.

It follows that asymptotic normality is obtained if both

h2α ∝ n−2αβ � n−1 and
1

n2
h−γ ∝ nβγ−2 � n−1 for n large,

which holds as long as β > 1
2α

and β < 1
γ

= 1
2dY

. This means that for commonly-used second

order (α = 2) kernels there are only feasible rates (β-values) for dY = 1, being β ∈ (1
4
, 1
2
).

For dY = 2 and larger, larger α-values are required. Either data sharpening or higher-order

kernels can be used to reduce the order of the bias term, opening up some range of β-values

for which the bandwidth tends to zero sufficiently slow, so that the variance doesn’t explode.

As a consequence, using a density estimation kernel of appropriate order α > dY , and a

constant rate β ∈
(

1
2α
, 1
2dY

)
for the bandwidth sequence hn = cn−β, one obtains

√
n
q∗,n − q∗
S ′n

d−→N(0, 1), (C.1)

where S ′2n is a consistent estimator of the asymptotic variance 4Var [limh→0K1(Wt, h)] =

4Var [r0(Wt)]. In the time series setting, under the assumption that the processes are sta-

tionary and weakly dependent, the long-run variance of
√
n(q∗,n − q∗) is given by

σ′2 = 4

(
Var (r0(Wt)) + 2

∞∑
`=1

Cov [r0(Wt), r0(Wt+`)]

)
,

where r0(Wt) = limh→0(K1(Wt, h)). The term in brackets can then be estimated consistently

using a HAC estimator for the long-run variance of r0(Wt) (Denker and Keller 1983; 1986).
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Appendix D. MSE optimal bandwidth for NCoVaR Granger causality

We first focus on the basic case dY = 1, where density kernel order α = 2 suffices,

and discuss extensions to higher-variate cases later. Within the feasible window of β-values

(β ∈ (1
4
, 1
2
)) for dY = 1 the MSE optimal rate can be found by minimising the right hand

side of the expression for the MSE with respect to h. The first order condition is

2α(E(s(Wi)))
2h2α−1 − 2

n2
bγh−γ−1 = 0,

which gives the asymptotically optimal bandwidth

h∗n =

(
bγ

α(E(s(Wi)))2

)1/(γ+2α)

n−2/(γ+2α) =

(
bγ

α(E(s(Wi)))2

)1/(2dY +2α)

n−1/(dY +α).

The optimal rate is βopt = 1/(dY + α) = 1
3

if dY = 1 and α = 2.

We wish to calculate the MSE of q∗,n as an estimator of

q∗ = lim
h→0

E(K(Wk,W`;h)),

which is 0 under H0, for Wk and W` two independent random variables, distributed as

Wt = (Xt, Yt, Yt+1). We first derive some expressions for the expectation of the squared

kernel, which can be decomposed as

E
[
(K(Wk,W`;h))2

]
= E (diag. terms + off-diag. terms) ,

where the diagonal terms are the squares of the four terms in the U-statistics kernel (5),

which, using the independence and equal distributions of Wk and W`, can be simplified to

diag. terms = (IA(Zk)IC(Xk)K
2
h(y∗ − Yk)ID(X`)K

2
h(y∗ − Y`))

+IA(Zk)ID(Xk)K
2
h(y∗ − Yk)IC(X`)K

2
h(y∗ − Y`)) /2,
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while the 12 off-diagonal (cross-product) terms can be represented as

off-diag. terms = 1
2
K2
h(y∗ − Yk)K2

h(y∗ − Y`) [IA(Zk)IC(Xk)ID(X`)IA(Zk)ID(Xk)IC(X`)

+IA(Zk)IC(Xk)ID(X`)IA(Z`)IC(X`)ID(Xk)

−IA(Zk)IC(Xk)ID(X`)IA(Z`)ID(X`)IC(Xk)

−IA(Zk)ID(Xk)IC(X`)IA(Z`)IC(X`)ID(Xk)

+IA(Zk)ID(Xk)IC(X`)IA(Z`)ID(X`)IC(Xk)

−IA(Z`)IC(X`)ID(Xk)IA(Z`)ID(X`)IC(Xk)] .

Assuming that regions C and D do not overlap (which can always be achieved by taking µ

sufficiently small), only the third and fourth of the six terms within brackets can be nonzero,

since then IC(X`)ID(X`) ≡ 05. Taken together with the diagonal terms

E
[
(K(Wk,W`;h))2

]
= 1

2
E (K2

h(y∗ − Yk)K2
h(y∗ − Y`)IA(Zk)IC(Xk)ID(X`)(1− IA(Z`)))

+1
2
E (K2

h(y∗ − Yk)K2
h(y∗ − Y`)IA(Zk)ID(Xk)IC(X`)(1− IA(Z`)))

= 1
2
E (K2

h(y∗ − Yk)IA(Zk)IC(Xk))E (K2
h(y∗ − Y`)ID(X`)(1− IA(Z`)))

+1
2
E (K2

h(y∗ − Yk)IA(Zk)ID(Zk))E (K2
h(y∗ − Y`)IC(X`)(1− IA(Z`))) .

VAR(1) optimal bandwidth. Consider the the bivariate process defined by

Xt = aYt +
√

1− a2εX,t

Yt+1 = aYt +
√

1− a2εY,t

where εX,t and εY,t are i.i.d. standard normal. Note that both Xt and Yt are N(0, 1)-

distributed as well. Let Wt = (Xt, Yt, Zt) = (Xt, Yt, Yt+1), then it is easy to verify that

5In case C and D do overlap, the test statistic is still asymptotically normal, but the derivation of the
asymptotic variance would become much more involved.
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the density of W is given by

fW (x, y, z; a) =
1

(2π)3/2(1− a2)
e−y

2/2−(x−ay)2/(2(1−a2))−(z−ay)2/(2(1−a2)). (D.1)

The MSE optimal bandwidth for a = 0.4, γ = 0.95, µ = 0.8, for example, turns out to

be (obtained through extensive analytical manipulation with Mathematica)

h
AR(1)
opt = 3.07× n−1/3.

ARCH(1) optimal bandwidth. To obtain an idea how the optimal bandwidth h behaves in a

setting with conditional heteroskedasticity, we also considered the following distribution of

(X, Y, Z).

Y ∼ N(0, 1), X|Y ∼ N(0, 1 + aY 2), and Z|(X, Y ) ∼ N(0, 1 + aY 2). (D.2)

The MSE optimal bandwidth for a = 0.4, γ = 0.95, µ = 0.8, for example, turns out to

be (obtained using Mathematica)

h
ARCH(1)
opt = 2.14× n−1/5.

Interestingly, the MSE optimal bandwidth for the ARCH process tends to zero at a slower

rate than 1/(dY +α) = 1/3 here, since some terms that are leading in the bandwidth cancel

for the ARCH process while they don’t for the VAR process.

In the higher-variate case, only the fact that we use a higher dimension and/or a higher-

order kernel affects the optimal bandwidth parameter c under the assumption that the

additional variable is independent of the others. Adding a possible confounding variable that

is independent of the other variables has no effect on the constant c in the expression for

the optimal bandwidth, since their densities integrate out in the calculation of the relevant
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expectations. The optimal sample size-dependent constants for different dimensions dY ,

choices of µ and γ are given in Table D1 for the VAR and ARCH processes with dependence

parameter a = 0.4.
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Table D1: Optimal constant c for sample size-dependent bandwidth (hn = cn−β) in NCoVaR Granger
causality test for VAR and ARCH processes, as given in Eqs. (D.1) and (D.2) respectively, with a = 0.4.
The values are given for different quantile levels (γ), fixed bandwidth parameter µ and for 2nd and 4th-order
Gaussian kernels under the assumption of independent confounding variables. Rate of convergence should
satisfy 1/(2α) < β < 1/(2dY ) as discussed in Section 2.6.

γ = 0.95 γ = 0.99
Estimation kernel Fixed bandwidth (µ) VAR ARCH VAR ARCH

Gaussian of order α = 2 0.1 7.95 3.42 8.74 3.23
0.2 5.64 2.79 6.22 2.63
0.3 4.63 2.50 5.13 2.35
0.4 4.05 2.33 4.49 2.17
0.5 3.67 2.23 4.07 2.06
0.6 3.40 2.17 3.76 1.98
0.7 3.21 2.14 3.53 1.92
0.8 3.07 2.14 3.35 1.89
0.9† 2.96 2.16 3.20 1.87
1.0† 2.88 2.21 3.08 1.86
1.1† 2.82 2.29 2.98 1.86
1.2† 2.78 2.40 2.89 1.88
1.3† 2.75 2.57 2.82 1.91

Gaussian of order α = 4 0.1 3.30 3.50 5.64 3.30
0.2 2.68 2.86 4.37 2.69
0.3 2.37 2.56 3.66 2.40
0.4 2.18 2.39 3.18 2.22
0.5 2.05 2.28 2.84 2.11
0.6 1.95 2.22 2.59 2.03
0.7 1.87 2.19 2.39 1.97
0.8 1.81 2.19 2.24 1.93
0.9† 1.76 2.21 2.11 1.91
1.0† 1.73 2.26 2.01 1.90
1.1† 1.70 2.34 1.93 1.91
1.2† 1.68 2.46 1.87 1.92
1.3† 1.67 2.63 1.81 1.95

† for larger µ values the conditioning events C and D have some overlap, which is ignored in the

calculations.
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Appendix E. Additional results
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Figure E1: CoVaR and NCoVaR performance in VAR class of models. Size-size and size-power plots for

different sample sizes generated under process in Eq. (8) with instantaneous dependence (τ = 0). The

quantile at which the risk is defined is set to q = 0.99. We apply the MSE-optimal bandwidth and we set

the fixed-range parameter to µ = 0.8. The results are aggregated over 1000 simulations.
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Figure E2: CoVaR and NCoVaR Granger causality performance in VAR class of models. Size-size and size-

power plots for different sample sizes generated under process in Eq. (8) with lagged dependence (τ = 1).

The quantile at which the risk is defined is set to q = 0.99. We apply the MSE-optimal bandwidth and we

set the fixed-range parameter to µ = 0.8. The results are aggregated over 1000 simulations.
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Table E2: Performance summary of CoVaR and NCoVaR methodologies in VAR class of models for selected

nominal size levels (α). Actual rejection rates under X → Y causality (power) and Y → X causality (size)

for different sample sizes (n), generated under process in Eq. (8) with instantaneous dependence (τ = 0) and

with lagged dependence (τ = 1). The quantile at which the risk is defined is set to q = 0.99. We apply the

MSE-optimal bandwidth and we set the fixed-range parameter to µ = 0.8. The results are aggregated over

1000 simulations.

Instantaneous dependence Granger causality

α n size power size power

CoVaR NCoVaR CoVaR NCoVaR CoVaR NCoVaR CoVaR NCoVaR

0.01 500 0.596 0.334 0.574 0.331 0.057 0.000 0.695 0.070

1000 0.865 0.753 0.849 0.744 0.027 0.000 0.879 0.216

2000 0.993 0.986 0.993 0.983 0.028 0.000 0.995 0.510

5000 1.000 1.000 1.000 1.000 0.023 0.001 1.000 0.899

0.05 500 0.768 0.732 0.752 0.723 0.113 0.003 0.830 0.395

1000 0.966 0.953 0.954 0.946 0.078 0.008 0.971 0.643

2000 1.000 0.999 1.000 1.000 0.076 0.012 1.000 0.862

5000 1.000 1.000 1.000 1.000 0.084 0.016 1.000 0.990

0.1 500 0.862 0.874 0.849 0.856 0.163 0.034 0.893 0.619

1000 0.987 0.983 0.987 0.985 0.131 0.047 0.990 0.798

2000 1.000 1.000 1.000 1.000 0.130 0.053 1.000 0.949

5000 1.000 1.000 1.000 1.000 0.135 0.057 1.000 0.995
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Figure E3: CoVaR and NCoVaR performance in (G)ARCH class of models. Size-size and size-power plots

for different sample sizes generated under process in Eq. (9) with instantaneous dependence (τ = 0). The

quantile at which the risk is defined is set to q = 0.99. We apply the MSE-optimal bandwidth and we set

the fixed-range parameter to µ = 0.8. The results are aggregated over 1000 simulations.
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Figure E4: CoVaR and NCoVaR Granger causality performance in (G)ARCH class of models. Size-size

and size-power plots for different sample sizes generated under process in Eq. (9) with lagged dependence

(τ = 1). The quantile at which the risk is defined is set to q = 0.99. We apply the MSE-optimal bandwidth

and we set the fixed-range parameter to µ = 0.8. The results are aggregated over 1000 simulations.
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Table E3: Performance summary of CoVaR and NCoVaR methodologies in (G)ARCH class of models for

selected nominal size levels (α). Actual rejection rates under X → Y causality (power) and Y → X causality

(size) for different sample sizes (n), generated under process in Eq. (9) with instantaneous dependence (τ = 0)

and with lagged dependence (τ = 1). The quantile at which the risk is defined is set to q = 0.99. We apply

the MSE-optimal bandwidth and we set the fixed-range parameter to µ = 0.8. The results are aggregated

over 1000 simulations.

Instantaneous dependence Granger causality

α n size power size power

CoVaR NCoVaR CoVaR NCoVaR CoVaR NCoVaR CoVaR NCoVaR

0.01 500 0.016 0.028 0.018 0.035 0.057 0.000 0.042 0.008

1000 0.004 0.155 0.012 0.174 0.032 0.000 0.012 0.054

2000 0.007 0.502 0.008 0.587 0.027 0.000 0.005 0.230

5000 0.001 0.957 0.005 0.976 0.023 0.000 0.008 0.725

0.05 500 0.041 0.234 0.046 0.279 0.129 0.006 0.089 0.138

1000 0.016 0.484 0.025 0.537 0.091 0.008 0.037 0.351

2000 0.023 0.806 0.027 0.867 0.080 0.010 0.027 0.621

5000 0.010 0.992 0.025 1.000 0.069 0.014 0.026 0.922

0.1 500 0.072 0.441 0.074 0.490 0.172 0.035 0.140 0.335

1000 0.040 0.669 0.043 0.720 0.138 0.038 0.073 0.569

2000 0.054 0.908 0.050 0.940 0.133 0.041 0.057 0.790

5000 0.042 0.998 0.051 1.000 0.120 0.054 0.067 0.965
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Figure E5: NCoVaR and NCoVaR Granger causality performance in VAR class of models in above quantile

definition. Size-size and size-power plots for different sample sizes generated under process in Eq. (8) with

instantaneous (τ = 0) and lagged dependence (τ = 1). The quantile at which the risk is defined is set to

q = 0.99. We apply the MSE-optimal bandwidth and we set the fixed-range parameter to µ = 0.8. The

results are aggregated over 1000 simulations.
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Figure E6: NCoVaR and NCoVaR Granger causality performance in (G)ARCH class of models in

above quantile definition. Size-size and size-power plots for different sample sizes generated under pro-

cess in Eq. (9) with instantaneous (τ = 0) and lagged dependence (τ = 1). The quantile at which the risk is

defined is set to q = 0.99. We apply the MSE-optimal bandwidth and we set the fixed-range parameter to

µ = 0.8. The results are aggregated over 1000 simulations.
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