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Abstract

This paper investigates predicting intraday return patterns conditional on observed

overnight returns. Based on Trade and Quote data, we find evidence for dependence

between overnight returns and subsequent intraday first and last half-hour return

patterns for the S&P 500 Exchange-Traded Fund for the time period from 2003

to 2013 with both statistical and economic significance. Our methodology allows

studying the return patterns documented in the existing theoretical and empirical

literature in more detail. Moreover, we find that both the first and the last half-hours

offer trading opportunities for day traders. Specifically, 20-minute after the market

opens and the last 30-minute before the market closes seem to be the best holding

periods for investors in terms of annualized returns, Sharpe ratios, and Certainty

Equivalent Returns.
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1 Introduction

Studies such as Wood et al. (1985), Smirlock and Starks (1986), Harris (1986), Jain and

Joh (1988), Hong and Wang (2000) and Bogousslavsky (2016) show that average returns

(mean returns, or market mean returns) vary over the day.1 To explain this, Hong and

Wang (2000) solve an equilibrium model for a competitive stock market in which investors

trade for asset allocation as well as for informational reasons. The model indicates that

time patterns in intraday stock returns are driven by time-varying hedging demand and

time-varying information asymmetry. In addition, Hong and Wang (2000) find U-shaped

and inverted U-shaped mean intraday stock return patterns during trading sessions.2

Here we propose a novel approach based on cumulative returns, referred to as cu-

mulative regression (CumRe), to forecast intraday market return patterns conditional on

overnight returns. By using this intraday pattern forecast, day traders can decide when

to close out same-day trading positions to make profits. The literature already reports

evidence of dependence between the overnight return and the subsequent intraday returns.

For instance, Liu and Tse (2017) find that overnight returns significantly help predict

the first half-hour market returns and the last half-hour market returns. Berkman et al.

(2012) find a strong tendency for positive overnight returns followed by negative intraday

returns. In practice, traders often view the close-to-open gap (i.e. overnight return in this

paper) as an important marker; serving as either a support zone or resistance zone for that

day’s trading activity. Meanwhile, major macroeconomic announcements, such as GDP

and CPI announcements, and the vast majority of earnings announcements are released

either before the market opens or after the market closes (see e.g., Oldfield and Rogalski,

1980; Gao et al., 2018; Bogousslavsky, 2018). As stated by Hong and Wang (2000), market

prices cease to provide information to the uninformed investors when the market is closed,

but continue to provide information after the market reopens. We propose predicting the

1A more precise statement is that market average returns vary during exchange trading sessions. We
decompose returns into intraday and overnight returns based on exchange trading and non-trading periods
for simplicity.

2See Subsection C.3 “Time Patterns of Returns” of Section V in Hong and Wang (2000) for details.

2



subsequent intraday return patterns on day t based on close-to-open returns (i.e. overnight

returns) observed earlier on the same day.

We employ both a parametric CumRe method, based on predictive regressions, and

a non-parametric CumRe method using kernel regressions, to predict intraday patterns

in mean returns. The predictive regression is widely used in the return predictability

literature (see e.g., Ang and Bekaert, 2007; Goyal and Welch, 2008; Rapach and Zhou, 2013)

considering linear dependence between the predictor(s) and the response variable. Non-

parametric methods provide flexibility in accommodating nonlinear dependence between

the overnight returns and intraday returns. Guidolin et al. (2009) find that capturing

nonlinear effects may be the key to improving forecasts and that non-linear dynamics

should be modelled for the US stock market. Maasoumi and Racine (2002) conclude

that the evidence of dependence-based on linear models is somewhat inconclusive and

indicate the presence of nonlinear dependence in returns. Tsay (2010) also shows that

nonlinearities exist in high-frequency financial time series. Abhyankar et al. (1997) find

nonlinear dependence and chaos in US stock market returns. Therefore, we compare the

intraday return patterns predicted by using both the parametric CumRe and the more

flexible non-parametric CumRe. We evaluate the parametric and non-parametric versions

of CumRe in terms of out-of-sample forecast performance as well as economic significance.

The main goal of our paper is to identify upward/downward trends in intraday cumula-

tive returns in response to overnight returns. We utilize these time patterns in dependence

between the overnight returns and the subsequent intraday returns to formulate promising

trading strategies for day traders. We examine the intraday return patterns within the

first and the last half-hours separately. These two half-hours during each trading day are

most popular among traders. According to, among others, Wood et al. (1985), Andersen

and Bollerslev (1997), and Heston et al. (2010), volatilities during these two half-hours

are usually higher than during the other trading periods. In addition, the trading volumes

during these time intervals are, on average, larger than during other time intervals (see

e.g., Gao et al., 2018). Moreover, overnight returns can significantly help predict returns

within the first and last half-hour, compared with intraday returns in other time intervals.
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Similar to studies such as Rogalski (1984), Jain and Joh (1988), Wood et al. (1985),

we also use the return on the market index as a proxy of the market return. However, we

use ETFs transaction-level data3, instead of the underling non-tradable cash index. This is

because the spot prices of the underling index may be distorted by non-synchronous trading

(Cliff et al., 2008; Yang et al., 2010). We examine SPDR S&P 500 ETF (ticker symbol

SPY), the largest ETF with the structure of Unit Investment Trust. Compared with other

ETFs for the US market, the much larger trading volumes and higher daily turnover of

SPY indicate that it is widely used as a trading vehicle for more active traders. Besides,

SPDR S&P 500 ETF has the lowest and relatively most stable bid-ask spread.4 According

to Amihud and Mendelson (1987), the stochastic nature of stock returns is affected by two

major factors: the arrival of new information and noise transactions, i.e. the smaller the

bid-ask spread, the smaller the noise-induced variance. Therefore, we are likely to capture

the impact of new information on returns when we examine SPY data.

Our results show that CumRe can identify the intraday patterns in returns documented

in the previous literature (see e.g., Amihud and Mendelson, 1987; Hong and Wang, 2000;

Liu and Tse, 2017). Specifically, the market overreaction at the beginning, the market

under-reaction at the closing and the opposite trends during the first and the last half-

hours of trading. Besides, non-parametric CumRe shows intraday return patterns in more

detail and we find that the non-parametric CumRe improves the out-of-sample forecast

performance in terms of the Diebold and Mariano (1995) test statistic and the leave-one-

year -out cross-validation.

Overall, the overnight returns help predict the market directions within the first and

the last half-hours of the trading sessions. The timing strategies based on the signs of

3We use data from NYSE Trade and Quote (TAQ) database of Wharton Research Data Services. This
database contains intraday transactions data in two databases, Consolidated Quote database for intraday
quotes and Consolidated Trade database for intraday quotes, for all securities listed on the New York Stock
Exchange (NYSE) and American Stock Exchange (AMEX), as well as Nasdaq National Market System
(NMS) and SmallCap issues.

4The average bid/ask spread is one penny ($0.01) even when market volatility spikes and during fi-
nancial crisis. Ross, J.E. (2018, January 17). Steady Under Pressure: How SPY Performs in Times of
Market Stress. Retrieved from https://global.spdrs.com/blog/post/2018/jan/steady-under-pressure-how-
spy-performs-in-times-of-market-stress.html. Last access date 03-12-2018.
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the overnight returns always generate higher annualized returns, and usually yield better

Sharpe ratios. Besides, our results indicate that holding established positions for 15-minute

or 20-minute after the market opens yields higher annualized returns and substantially

higher Sharpe ratios, and always positive and higher utility gains than holding positions

for the full last half-hour of trading time.

This paper is organized as follows. Section 2 introduces methodology. Section 3

describes data and presents evidence of predictability. Section 4 compares the out-of-

sample forecast performance of non-parametric CumRe and parametric CumRe. Section

5 presents economic significance in terms of market timing strategies and utility gains of

mean-variance investors. Section 6 concludes.

2 Parametric and Non-parametric CumRe

We consider the case of discrete-time stock prices. Let t indicate the trading day. The

regular trading hours in the United States are from 9:30 a.m. to 4 p.m. Eastern time.

Consequently, the trading period on day t lasts 6.5 hours (390 minutes).

We employ the cumulative returns similar to Tsay (2010, Ch. 5) and explore their

pattern forecasts. We consider day traders, who open and close their positions on the

same day, trying to maximize their profits based on cumulative returns.

Cumulative returns are formulated by expanding a 5-minute interval starting from the

same initial price. We focus on 5-minute interval, because it strikes a balance between

market microstructure effects and the blurring price reactions over larger time intervals

(see e.g., Andersen et al., 2007). There are 78 cumulative 5-minute return observations per

trading day.

Formally, for each i and j, satisfying 0 ≤ i < j ≤ 78, let pt,i be the log price at which

a security is first traded on day t, i.e. i × 5 minutes after the market opens to establish

a position on that security, and pt,j be the log price at which the security is executed to

close out the position established earlier on day t.

A return pattern on day t can be defined as yt =
(
yi,i+1
t , yi,i+2

t , . . . , yi,jt
)
, where yi,jt are
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the cumulative returns on day t, given by yi,jt ≡ pt,j − pt,i. We focus on trading within the

first half-hour and the last half-hour per day, that is, patterns yft =
(
y0,1
t , y0,2

t , . . . , y0,6
t

)
and ylt =

(
y72,73
t , y72,74

t , . . . , y72,78
t

)
, respectively.

Let τ represent the τ th element in the return pattern vector yt. There are 6 elements

in the vector of the first or the last half-hour return pattern. The τ th element of the return

pattern on day t, yt, can be expressed as yt,τ , where τ = 1, . . . , 6, t = 1, . . . , T , T is the

total number of trading days in the sample.

In the setting of cumulative regression, we assume the vector-valued time-series process

{Yt} under consideration (e.g. the first or last half-hour return pattern) to be strictly

stationary. Given an overnight return Xt = x, the conditional mean of the τ th element in

Yt is denoted by

m(τ, x) ≡ E(Yt,τ |x). (1)

Parametric predictive regression is commonly used in the return predictability literature

(see e.g., Stambaugh,1999; Ang and Bekaert, 2007; Goyal and Welch, 2008; Rapach and

Zhou, 2013). Gao et al. (2018) and Liu and Tse (2017) employ the predictive regressions

to investigate the linear dependence between the predictor(s) and the response variables,

namely the overnight returns and intraday returns.5 We propose a parametric CumRe

based on predictive regressions of intraday return patterns on the overnight returns. The

parametric CumRe is specified as

yt,τ = ατ + βτxt + εt,τ , (2)

where ατ is a constant term and βτ is the coefficient of the predictor xt, i.e. the observed

overnight return on day t.

In nonparametric regression, Nadaraya-Watson estimators based on Gaussian kernels

are among the most popular estimators. The corresponding nonparametric estimator of

5The overnight return is included in formulating the first half-hour return in Gao et al. (2018), resulting
in a statistically linear dependence between the first half-hour returns and the last half-hour returns.
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m(·) is given by

m̂(τ, x) ≡
T∑
t=1

yt,τwt(x, h), (3)

where wt(x, h) = K
(
xt−x
h

)
/
∑T

t′=1K
(xt′−x

h

)
with K(u) = 1/

√
2π exp(−u2/2), and the

bandwidth for the τ th element in yt, hτ , is to be selected from a pre-defined set of values

h1, · · · , hq according to least-squares cross-validation (CV). Here we consider a range of

bandwidths between 0.1 and 15.6

Also in time-series settings, CV can be used for bandwidth selection (Yao and Tong,

1998). For details regarding the corresponding mild regularity conditions for strictly sta-

tionary discrete-time time series, we refer to Yao and Tong (1998). According to Härdle et

al. (2004), minimizing CV(h) is equivalent to minimizing the average squared error (ASE)

while trading off bias and variance. For the purpose of prediction, we employ leave-one-out7

CV to select a bandwidth which minimizes the mean squared prediction error (MSPE).

The selected bandwidth for τ , hτ is given by

hτ = arg min
h∈{h1,...,hq}

1

T

T∑
t=1

(yt,τ − ŷ−t,τ (τ, x))2, (4)

where ŷ−t,τ (x, h) is the estimator of yt,τ formed by leaving out the tth observation when

generating the prediction for observation t.

In the setting of conditional mean forecasts of return patterns, the bandwidth hτ herein

6The function for generating the bandwidth selection set is taken to be equidistant on a logarithmic
scale, and given by hk = a · exp [(k − 1)/(q − 1) · (log b− log a)], k = 1, . . . , q, where a is the lower bound
of the bandwidth selection set, b is the upper bound of the bandwidth selection set, q is the number
of bandwidths in the selection set. We take q = 80 to account for the trade-off between computational
intensity and precision of bandwidth selection. The upper bound here is determined by the extreme values
of returns in percentage according to our data set.

7To take into account serial correlation in time series, we used the autocorrelation functions and the
partial autocorrelation functions of elements in yft and ylt. The first order autocorrelation is not signif-

icantly different from 0 at the 90% significance level for all the elements in yft . Even if the first order

autocorrelation for a couple of elements in yft is significantly different from 0 at the 95% significance level,
these autocorrelation values (less than |0.18|) are not large enough to make a dramatic difference in band-
width selection. That is, given this level of autocorrelation, the bandwidths selected by cross-validation
and a correlation-corrected method (CDPI) are comparable for a time series process. We refer to Opsomer
et al. (2001) for details.
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controls the amount of data which is effectively used. This approach gives more weight to

the historical overnight return observations Xt such that ‖Xt − x‖ is closer to 0, which is

similar to some local weighted average methods such as the nearest-neighbors method in

machine learning.

For each τ , the estimator of the conditional cumulative distribution function (CDF)

FYτ |X(y|x) of the cumulative returns Yt,τ given an overnight return x is

F̂Yτ |X(y|x) =
T∑
t=1

I(Yt,τ ≤ y)wt(x, hτ ), (5)

where I(·) is a indicator function, which equals 1 if its argument is true, and 0 otherwise.

The CDF of the non-parametric CumRe estimator will provide more detail in intraday

return patterns, e.g., opposite trends in the first and the last half-hours, larger return

volatility at the opening phase than at the closing, leverage effects in both the first and

the last half-hours.

To avoid capturing spurious predictability due to in-sample overfitting, we examine

the out-of-sample predictive performance. For the conditional mean forecasts of return

patterns, we introduce leave-one-year-out cross-validation and the Diebold-Mariano test

to compare the forecast accuracy of non-parametric CumRe with that of the parametric

CumRe. We propose the squared prediction error (SPE) of a return pattern yt during the

first or the last half-hour to measure the expected squared distance between the pattern

predicted by a specific value of the overnight return and the true intraday return pattern

during the trading session. We define the distance between the realized return pattern and

the predicted return pattern on day t by

SPEt =
6∑

τ=1

(
εt,τ√
τ

)2

, (6)

where εt,τ = yt,τ − ŷt,τ is the predition error when ŷt,τ is predicted by the overnight re-

turn. Herein the prediction error εt,τ is standardized by the square root of τ , since each

particular increment of this cumulative return pattern has a prediction error variance that
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is proportional to the time over which the return is realized.

We assume that returns on the market during the first and the last half-hours in one

year are independent with the other years. We use leave-one-year-out cross-validation

(LOYOCV). Let N denote the number of calendar years, then the data set is partitioned

into N disjoint sets for N calendar years, say I = {I1, . . . , IN}. Define In− = ∪m6=nIm, so

that for a particular evaluation n in the cross-validation, In is used as test set, and the

remaining sets, In− , are used for model fitting. The mean squared prediction error (MSPE)

for year n across all τs is then

MSPEn(In−) =
1

|In|
∑
∀t∈In

SPEt(In−), (7)

where | · | denotes the cardinality of a set and thus |In| is the number of trading days in

year n, and In− denotes conditioning on information from all the other years for parameter

estimation.The sum of squared prediction errors (SSPE) for all N available calendar years

is then just SSPE =
∑N

n=1 MSPEn(In−). The smaller the SSPE, the better the predictive

performance is.

We will use the SPEs to formulate a type of Diebold and Mariano (1995) test to

compare the forecast accuracy of non-parametric and parametric CumRe for return pattern

forecasts. The null hypothesis is that the two forecast methods have the same forecast

accuracy. The test statistic and corresponding test results are provided in Section 4.

3 Data and Evidence of Predictability

We use SPDR S&P 500 ETF prices, sampled at the 5-minute frequency. The sample

period ranges from January 1, 2003 to December 31, 2013. Following studies using the

TAQ dataset on higher-frequency data such as Boffelli et al. (2016), Maneesoonthorn et al.

(2017), and Perera and Koul (2017), the raw data has been cleaned using methods similar

9



Table 1: Comparison of the dispersion and deviations for cumulative returns within the first
and the last half-hours (Jan 2003 - Dec 2013). The entries are based on 2714 observations
for each return series, which did not contain missing values. This table shows the ratios of
the dispersion and deviation measures. The superscripts f and l denote the first and last
half-hours, respectively.

τ = 1 τ = 2 τ = 3 τ = 4 τ = 5 τ = 6 Mean S.E. Ratio> 1

ABSf/ABSl 1.09 1.04 1.16 0.97 1.03 0.99 1.05∗ 0.02 4

IQRf/IQRl 1.37 1.34 1.26 1.27 1.24 1.24 1.29∗∗∗ 0.02 6

Minf/Minl 0.93 0.73 0.69 0.64 0.75 0.75 0.75∗∗∗ 0.04 0

Maxf/Maxl 1.25 1.30 1.81 1.37 1.37 1.32 1.40∗∗∗ 0.08 6

SDf/SDl 1.09 1.07 1.11 1.07 1.07 0.91 1.05∗ 0.03 5

Skewf/Skewl -6.20 -2.65 -1.93 -2.62 -2.36 -1.13 -2.81∗∗∗ 0.72 0

Kurtf/Kurtl 0.80 1.09 1.26 1.02 1.03 0.83 1.00 0.07 4

Notes: ABS denotes range (the difference between the maximum and minimum observation). IQR is
short for interquartile range. SD is standard deviation. Min and Max are the minimum (always nega-
tive) and maximum (always positive) values of the returns in the sample, respectively. Skew and Kurt
are skewness and kurtotis, and all the values of skewness are different from 0 and all the values of Kur-
totis are larger than 3. The cumulative returns during the first half-hour are always distributed skew
to the right (positive skewness) while the corresponding returns during the last half-hour are always
skew to the left (negative skewness), therefore all ratios are always negative. S.E. is short for stan-
dard error. ∗, ∗∗ and ∗∗∗ denote significance at the 1%, 5% and 10% significance level, respectively.

to those of Brownlees and Gallo (2006).8

In line with Oldfield and Rogalski (1980), Wood et al. (1985), and Liu and Tse (2017),

the percentage overnight return is calculated as

ovrt = 100× (pt,0 − pt−1,78), (8)

where ovrt is the overnight return on day t, pt,0 is the log price at 9:30 a.m.9 on day t, and

pt−1,78 is the log price at 16:00 p.m. on day t− 1.

We conducted the Augmented Dickey-Fuller (ADF) test, and the Kwiatkowski-Phillips-

Schmidt-Shin (KPSS) test to examine the stationarity of the return series; all test results

suggest that these return series are stationary.

According to studies such as Harris (1986), Amihud and Mendelson (1987) and Gerety

8The corresponding R package is TAQMNGR. We use a choice of k = 60, γ = 0.02 for the data cleaning
algorithm, as mentioned by Brownlees and Gallo (2006).

9We also examined ovrt = 100 × (pt,09:35 − pt−1,16:00) and ovrt = 100 × (pt,09:45 − pt−1,16:00) as in
Bogousslavsky (2018), and we obtained correlation values between overnight returns and the subsequent
intraday returns similar to those found in the correlation matrix of the intraday returns, provided in
Table A1 in the Appendix.
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and Mulherin (1994), the return volatility is larger during the opening than during the

closing period. The results in Table 1 confirm that cumulative returns within the first

half trading hours tend to be more volatile than those within the last half trading hours.

Based on measures of dispersion such as the range of the return distributions (the difference

between the maximum and minimum returns), and the interquartile range (the difference

between 75th and 25th percentiles of return distribution, also called the midspread or

middle 50%), we find that, on average, the range of the return distribution during the first

half-hour is 5% larger than that during the last half-hour. The midspread is even 29%

larger.

Despite its greater dispersion, we observe that the cumulative returns during the first

half-hour have larger maximum values but smaller minimum values, than those returns

during the last half-hour. This implies that it is possible for traders to realize higher

profits and smaller losses during the first half-hour. Meanwhile, the ratios of skewness

show different degrees of asymmetry in the return distributions. Notice that the ratios

of skewness are all negative. This is because all the cumulative returns during the first

half-hour appear to be skewed to the right (positive skewness), while the corresponding

returns during the last half-hour appear to be skewed to the left (negative skewness).

To illustrate the behavior of the cumulative 5-minute market returns series within the

first and the last half-hours, we present graphical results of the means of the market return

across the trading days in Figure 1. The left panel shows the changing trends in the mean

returns within the first half-hour. It is evident that all means conditional on negative

overnight returns (the red dots), averaged at -0.46%, are positive and present a rough

upward trend within the first half-hour. The mean of cumulative return peaks at around

0.02% when τ = 4. After that, it declines slightly when τ = 5, but goes up again to

slightly above 0.02% when τ = 6. In contrast, all means conditional on positive overnight

returns (green dots), averaged at 0.42%, lie below 0%. It shows a downward trend until

25 minutes after the market opening, reaching a low at around -0.03% when τ = 5. It is

interesting to note that the means of returns when τ = 5 are inflection points for both the

unconditional mean returns and the conditional mean returns. The unconditional mean
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Figure 1: Cumulative market return (in %) within the first (left panel) and last (right
panel) half trading hours conditional on positive returns, ovr+ (red dots), on negative
returns, ovr− (green dots) and unconditional means, unc (blue dots). The error bars
represent 95% confidence intervals.

(in blue), present a pattern similar to means conditional on positive overnight returns. The

pattern shows a slight fall, ending at about -0.07% when τ = 5. Then it increases, even

though the unconditional mean is still below 0.

The right-hand side panel of Figure 1 reflects the changing trends in the means of

market returns within the last half-hour of trading time. Notice that all the unconditional

and conditional means of the market returns are positive when τ = 1 during the last half

trading hour. However, the mean conditional on positive overnight returns (represented

by ovr+) and that conditional on negative overnight returns (ovr−) show a completely

opposite trends afterwards; ovr+ experiences an increase until τ = 3 (at slightly higher

than 0.02%), and then a decrease at just above 0.01% when τ = 5, but jumps up to over

0.03% when τ = 6. In contrast, ovr− falls to a negative number when τ = 2, then goes up

just below 0 when τ = 3. After that, it starts to decrease and reaches a number smaller

than −0.04% when τ = 6 during the last half trading hour. The unconditional mean

illustrates a pattern similar to ovr+. It increases until τ = 3, and then decreases until

12



τ = 5 and slightly increases after, within the last half-hour.

Table 1 and Figure 1 provide evidence that the behavior of the cumulative 5-minute

market mean returns within the first half-hour is different from that within the last half-

hour. Besides, we find that the overnight returns are negatively (positively) correlated

with the cumulative returns during the first (last) half-hour (see Table A). Therefore, we

investigate the conditional pattern forecasts depending on overnight returns during the

first half-hour and the last half-hour separately.

In light of Menkveld et al. (2007), a short-term market overreaction is consistent with

liquidity suppliers who are compensated for their services through price reversals, while

market under-reaction or positive serial correlation is consistent with strategic trading by

informed investors who split their order across time to maximize profit. As observed by

Amihud and Mendelson (1987), a short-term market overreaction to information is more

likely during the opening phase. In that case, we may expect a negative trend pattern in

market mean returns after the market opens conditional on a positive overnight return,

because investors are more willing to earn profits by selling stocks after the market opens.

For a negative overnight return, we may expect a positive trend pattern in market mean

returns after the market opens. Amihud and Mendelson (1987) find evidence that a short-

term market under-reaction to information is more likely during the closing phase of the

market. Hence, we may expect a positive (negative) trend pattern in the market mean

returns conditional on a positive (negative) overnight return in the closing phase.

When it comes to parametric CumRe, we find that the overnight returns are significant

predictors for the cumulative returns during the first half-hour, according to Table 2.10 In

addition, overnight returns can also be used to predict the price movements from 15:30 to

15:55 and 15:30 to 16:00, i.e., the last half-hour before closing. Furthermore, we also find

the negative relationship between the overnight returns and cumulative returns through the

first 30 minutes, while the positive relationship between the overnight returns and returns

10We also examined the cumulative returns for the whole trading session i.e. y0,1
t , y0,2

t , . . . , y0,78
t . The

overnight returns are significant predictors for the intraday returns from 9:30 to 14:55. However, a full
discussion of longer trading periods is beyond the scope of this paper, since we focus on the first and and
last half trading hours herein.
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Table 2: Predictability during the first and the last half-hour. Panel A shows the results of
regressing the cumulative returns during the first half-hour on the overnight returns, while
Panel B shows the results of regressing the cumulative returns during the last half-hour on
the overnight returns. The returns are in percentages and the coefficients are scaled up by
100. Newey and West (1987) robust t–statistics are in parentheses, and significance at the
1%, 5%, and 10% level is denoted by ∗∗∗, ∗∗, and ∗, respectively.

Dependent variable: y∗t,τ
Panel A: first half-hour Panel B: last half-hour

τ = 1 τ = 2 τ = 3 τ = 4 τ = 5 τ = 6 τ = 1 τ = 2 τ = 3 τ = 4 τ = 5 τ = 6
Intercept 0.05 0.01 −0.09 −0.17 −0.51 −0.21 0.11 0.06 1.12∗∗∗ 0.61 −0.34 −0.41

(0.20) (0.03) (-0.21) (-0.33) (-0.87) (-0.35) (0.47) (0.18) (2.81) (1.35) (-0.71) (-0.72)
ovr −1.88∗∗−4.14∗∗∗−6.50∗∗∗−7.21∗∗∗−9.44∗∗∗−9.43∗∗∗ 0.01 1.72 3.29∗ 2.55 5.37∗∗ 10.95∗∗∗

(-2.10) (-2.90) (-2.84) (-3.01) ( -3.27) (-2.67) (0.01) (1.05) (1.84) (1.35) (2.25) (2.71)
R2(%) 0.84 2.15 3.15 3.03 3.98 3.34 0.00 0.43 0.99 0.44 1.48 3.80
R2

ad(%) 0.80 2.11 3.12 2.99 3.95 3.31 -0.04 0.39 0.96 0.40 1.45 3.76

in the last half-hour. Figure 2 shows the predicted intraday return patterns depending on

different values of overnight returns, namely 0%, ± 1%, ± 2.5%, during the first and the

last half-hours. The opposite trends within the first and the last half-hours are consistent

with existing literature such as Amihud and Mendelson (1987), Hong and Wang (2000),

and Menkveld et al. (2007).

The parametric CumRe is able to reflect only linear dependence. The Ramsey RESET

test (Ramsey, 1969) suggests that there are neglected non-linearities11 in the setting of

parametric CumRe, because quadratic or cubic terms of the fitted intraday return patterns

are statistically significant in the conditional pattern forecasts (except for ylt,4, which is

significant at the 10% significance level).

Next, we investigate non-parametric CumRe which may capture non-linearities. Fig-

ure 3 compares the forecasts provided by parametric CumRe and non-parametric CumRe

for the first 20-mins returns and the last 30-mins returns, the periods of the highest prof-

itability relative to risk, as we will show later. We observe substantial non-linearities in

Figure 3. The predictions based on the non-parametric CumRe show a twisting shape,

11We also applied the Probability Integral Transform (PIT) on the overnight returns prior to non-
parametric CumRe to account for skewness and excess kurtosis/fat tails in return distributions. We found
that the areas of predicted intraday returns conditional on positive and negative values of the overnight
returns are asymmetric, implying that non-linearities should not be neglected. The results are available
upon request.
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Figure 2: Parametric CumRe pattern forecasts depending on overnight returns within the
first half trading hour (from 0 to 30-minute) and last half trading hour (from 360 to 390-
minute). The symbol ‘ovr’ represents overnight returns. Returns are in percentages. The
sample period is from January 1, 2003, through December 31, 2013.

varying with magnitude of the overnight returns. The linear prediction seems to be af-

fected by large overnight returns and may not be accurate for relatively small overnight

returns. There is also a substantial asymmetry; with the same magnitude of overnight

returns, the degree of reaction to a positive overnight return is different from that to a

negative overnight return. The returns for other time spans (τ -values) show similar quali-

tative asymmetries.

Figure 4 shows the predicted non-parametric return patterns during the first (top panel)

and the last (bottom panel) half-hour trading periods conditional on negative and positive

overnight returns of ± 2.5%.12. We show conditional means (left side) and conditional the

distribution by plotting the conditional median as well as 80%, 90% and 95% predictive

intervals (right side). As in the linear case, the mean returns predicted non-parametrically

given a positive value of the overnight return (green line) shows a downward trend within

12In the Appendix we show patterns conditional on ± 1% overnight returns and the patterns of the
standardized returns ỹt,τ =

yt,τ
σ̂t,τ

conditional on overnight returns of 0, ± 1%, and ± 2.5%.
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Figure 3: Comparison of parametric and non-parametric CumRe prediction. The left panel
displays the predictions conditional on overnight returns during the first 20 trading minutes
(τ = 4). The right panel illustrates the predictions conditional on overnight returns for
the last 30-min returns, that is, the returns from 360 to 390 trading minutes (τ = 6). The
overnight returns range from -2.5 to 2.5 on the figure which covers 99% of all observations.
The solid line represents the predictions according to parametric CumRe. The dotted curve
shows the predictions based on non-parametric CumRe. The returns are in percentages.

the first 30 trading minutes and an upward trend within the last 30 minutes; the pattern of

mean returns conditional on a negative overnight return (red line) shows opposite trends

within the same time intervals. Moreover, the forecast distribution during the first half-

hour is skewed to the left (right) conditional on a positive (negative) overnight return; while

the forecast distribution for the last half-hour is skewed to the right (left) for a positive

(negative) overnight return.

4 Forecast Performance Evaluation

4.1 Leave-one-year-out cross-validation

Cross-validation (CV) is one of the most widely-used standard procedures for model eval-

uation in regression (Bergmeir et al., 2018). Burman and Nolan (1992) propose bias cor-
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Figure 4: Predicted return pattern conditional on overnight return (-2.5%, 0%, and 2.5%).
80% prediction interval is shaded in red, 90% – light red and 90% – light grey. The
predicted return is in percentage, and ovr is short for overnight return in the legend.

rection and Burman et al. (1994) propose η-block CV to account for serial dependence

in time series data. However, these cross-validation procedures leave out the possibly de-

pendent observations and use data insufficiently (Bergmeir et al., 2018). To reflect on

time-series dependence and efficiently use the available time series data set, we propose

the leave-one-year-out cross-validation to evaluate the time series pattern prediction.

Table 3 shows MSPEs using the leave-one-year-out evaluation for parametric CumRe

(column P) and the non-parametric CumRe (column NP). These values are benchmarked

against the MSPE of a simple constant forecast of 0-returns (column ∅). While it is

17



Table 3: Mean squared prediction error using leave-one-year-out cross-validation, Eq. (7).
‘∅’ indicates MSPEs from a constant 0-returns forecast used as a benchmark, ‘P’ indicates
MSPEs from the parametric approach, ‘NP’ indicates MSPEs from the non-parametric
approach. All numbers are scaled up by 100.

First half-hour Last half-hour
∅ P NP ∅ P NP

2003 10.97 11.00 10.95 6.58 6.75 6.67
2004 3.84 3.92 3.89 3.75 3.77 3.74
2005 2.91 3.08 2.95 3.23 3.21 3.22
2006 3.67 3.75 3.72 2.82 2.82 2.81
2007 6.03 6.07 5.97 8.13 7.92 8.06
2008 46.37 45.13 46.38 54.10 53.47 53.60
2009 26.70 27.66 27.15 18.87 19.39 18.85
2010 10.61 10.92 10.90 7.30 7.40 7.25
2011 14.72 14.86 14.67 12.86 12.84 12.88
2012 5.82 6.05 5.81 3.37 3.43 3.36
2013 4.46 4.56 4.48 2.49 2.46 2.48
Sum 136.11 137.00 136.86 123.52 123.48 122.93

hard to outperform the benchmark for the first half-hour return pattern forecasts, the

non-parametric CumRe overall shows smaller MSPE than the parametric CumRe in all

of the years only except for year 2008. For the last half-hour return pattern forecasts,

the conditional forecasts outperform the benchmark for most of the years, and overall the

non-parametric CumRe shows better performance than the parametric CumRe again.

4.2 Comparison of predictive accuracy of patterns

Next we formally compare parametric and non-parametric CumRe-based forecasts using

the Diebold and Mariano (1995) test statistic. Define the loss difference as the difference

between the non-parameteric and parameteric squared prediction error on day t,

dt = SPEt,NP − SPEt,P,
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with SPEt as defined in Eq. (6). The Diebold-Mariano test statistic is defined as the

average loss normalized by its standard error,

t-statDM =
d̄√
σ̂2
d/P

,

where the average is taken over the evaluation period of P days. A Newey and West (1987)

HAC robust estimator of σ2
d is used to account for serial dependence in the sequence of

loss differences {dt}.13 The null hypothesis is that the two methods have the same forecast

accuracy against the alternative of unequal forecast accuracy.

We used the estimation period from January 1, 2003 till March 9, 2009 and evaluate

performance for the period from March 10, 2009 to December 31, 2013, the period right

after the financial crisis. We find that for the first half-hour return patterns, the null

hypothesis is rejected at the 1% significance level (d̄ = −0.0054 and t-statDM = −3.39).

For the last half-hour, the null is rejected at the 5% significance level (d̄ = −0.0021

and t-statDM = −2.22). This gives a strong indication that the non-parametric CumRe

outperforms the parametric CumRe at the forecast accuracy during the evaluation period.

5 Economic Significance

Next, we develop market timing strategies and compute utility gains based on CumRe

for mean-variance day traders. For easier comparison with existing results we annualize

returns by multiplying mean daily returns for a given strategy by 252 trading days per

year. We will also compute annualized Sharpe ratios,
√

252(r̄/σ̂), where r̄ and σ̂ are the

sample mean and the sample standard deviation of the realized daily returns of a strategy,

respectively. In addition to simple standard deviation, we also compute a HAC robust

estimator. To measure utility gains of portfolios constructed based on different expected

returns, we use the annualized certainty equivalent rate of return (CER) which we describe

13As in Diks et al. (2011), the HAC estimator of variance is calculated as σ̂2 = λ̂0 +2
∑Z−1
z=1 ezλ̂z, where

λ̂z denotes the lag-z sample covariance of the sequence of loss differences {dt} and ez are the Bartlett
weights ez = 1− z/Z with Z = bP 1/4c, P is the number of days in the evaluation period.
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in Section 5.2.

5.1 Market timing

Market timing is the practice of moving in and out of the market by attempting to predict

the future direction of the market. To examine whether the overnight returns help predict

the market direction in practice, we employ the overnight returns as market timing signals

to trade in the market. Due to the negative relationship between the overnight returns

and returns during first half-hour, on each trading day we will take a short position if the

overnight return is positive at the beginning of the trading session; and then close it after

τ × 5 min, τ ∈ {1, . . . , 6}; we take a long position otherwise. We examine different time

intervals τ within the first half trading hour, for discovering when closing positions is most

profitable for day traders.

Table 4 shows the results of these market timing strategies during the first and last

half-hours. We compare the annualized returns based on the market time strategies I(ovr)

with the returns based on simply holding long positions for the same periods.14 When it

comes to annualized returns, predicting the directions of the market during the first or the

last half-hour based on the sign of overnight returns improves the performance of trading

strategy. All of the annualized returns when we use the overnight return as the trading

signal, on average, appear to be positive, while the simple long and short strategies yield

smaller returns. The highest average return of 9.31% is obtained when we enter the market

at 15:30, taking a position according to the sign of the overnight return on that day, and

close the position at 16:00.

To take risk into account, we also present annualized Sharpe ratios of each timing

strategy in Table 4. The higher the ratio, the better the performance. Conventionally, an

annualized Sharpe ratio larger than 1 is considered acceptable to investors. During the

first half-hour, holding a position for more than 10 minutes since 9:30 delivers a Sharpe

ratio larger than 1. When it comes to trades during the last half-hour, the market timing

14Holding a short position would result in an opposite return sign.
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Table 4: Market timing strategies during the first and the last half-hours and the passive buy-and-hold
strategy on a daily basis. The timing strategy denoted by I(ovr) takes a short (long) position in the
market when the observed overnight return is positive (negative) during the first half-hour on each trading
day t, or a long (short) position in the market when the observed overnight return is positive (negative)
during the last half-hour on each trading day t. Long indicates always taking long positions for different
holding periods during the first half trading hour. For each timing strategy, the average return (Avg ret)
and standard deviation (Std dev) are annualized by multiplying by 252 and

√
252, repectively, and are

expressed in percentages. We also present annualized Sharpe ratio (SRatio), skewness (Skew.), and kurtosis
(Kurt.) for each strategy. Sharpe ratios calculated based on Newey-West HAC estimator of variance are
in parentheses.

First half-hour Last half-hour
Timing Avg ret Std dev SRatio Skew. Kurt. Avg ret Std dev SRatio Skew. Kurt.

τ = 1 τ = 1
I(ovr) 0.37 2.25 0.16 (0.16) 0.74 12.14 0.06 2.07 0.03 (0.02) 0.27 15.21
Long 0.04 2.25 0.02 (0.02) 0.21 12.17 0.29 2.07 0.14 (0.14) -0.03 15.22

τ = 2 τ = 2
I(ovr) 2.52 3.08 0.82 (0.80) 1.32 15.35 1.31 2.88 0.45 (0.40) 1.00 14.15
Long -0.19 3.09 -0.06 (-0.06) 1.23 15.56 0.25 2.89 0.09 (0.09) -0.47 14.25

τ = 3 τ = 3
I(ovr) 4.85 3.99 1.22 (1.22) 1.46 17.68 3.14 3.61 0.87 (0.67) 0.82 13.91
Long -0.57 4.00 -0.14 (-0.14) 1.29 17.97 2.98 3.61 0.83 (0.89) -0.67 14.22

τ = 4 τ = 4
I(ovr) 5.70 4.52 1.26 (1.28) 1.56 16.25 2.08 4.22 0.49 (0.41) 0.18 16.21
Long -0.79 4.53 -0.18 (-0.18 ) 1.02 16.59 1.66 4.22 0.39 (0.43) -0.39 16.26

τ = 5 τ = 5
I(ovr) 6.32 5.16 1.23 (1.19) 1.45 14.73 4.29 4.81 0.89 (0.71) 1.14 14.51
Long -1.76 5.17 -0.34 (-0.36) 0.66 15.07 -0.59 4.82 -0.12 (-0.14) -0.28 14.67

τ = 6 τ = 6
I(ovr) 5.84 5.63 1.04 (1.03) 1.88 18.14 9.31 6.11 1.52 (1.16) 2.16 21.84
Long -1.01 5.64 -0.18 (-0.20) 0.51 18.50 -0.48 6.14 -0.08 (-0.10) -0.45 22.25

Buy-and-hold
Avg ret Std dev SRatio Skew. Kurt.

1.30 16.23 0.08 (0.09) -0.26 8.84

strategy conditional on the overnight return that holds the market for 30 minutes provides

the highest Sharpe ratio of 1.52. All the timing strategies for the first and the last half-

hours conditional on the overnight returns outperform the passive buy-and-hold strategy

when we take risk into account. Moreover, the conditional timing strategies generate

returns with positive skewness and much higher kurtosis, implying that these strategies

often generate positive returns. We conclude that using the overnight return as the trading

signal provides a good risk-return trade-off.
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5.2 Utility Gains

Assume that a mean-variance day trader allocates funds between the market portfolio

(SPY) with weight ωt,τ and a risk-free asset (3-month T-bill) with weight (1− ωt,τ ). The

portfolios are constructed on a daily basis conditional on overnight returns and held for

τ × 5 minutes, either during the first or last half-hour. Therefore, the risk-free rate is

assumed to be 0. The weight on the market portfolio, which incorporates the investor’s

optimal trade-off between the expected return and risk, can be obtained by solving the

following expected utility maximization problem (see e.g., Brandt, 2010),

ωt,τ = arg max
ω

(
E(ω · rt+1,τ )−

γ

2
Var(ω · rt+1,τ )

)
, (9)

where γ measures the level of relative risk aversion of the day trader. The solution of this

maximization problem is

ωt,τ =
r̂t+1,τ

γσ̂2
t+1,τ

, (10)

where r̂t+1,τ and σ̂2
t+1,τ denote investor’s estimate on the mean and variance of the returns

of market portfolio for time interval τ , respectively. In Campbell and Thompson (2008),

Ferreira and Santa-Clara (2011), and Gao et al. (2018), the expected returns of the market

portfolios predicted by predictors are used to construct the optimal portfolios for mean-

variance investors who allocate wealth between a risky asset (a stock market index or a ETF

of that index as a proxy of a market portfolio) and a risk-free asset. Similarly, we predict

expected returns on day t+ 1 obtained from either parametric or non-parametric CumRe.

The parameters of CumRe are estimated using an expanding window from January 1,

2003 to day t, where t ranges from March 9, 2009 to December 30, 2013. We also use the

unconditional historical average returns, which is commonly used to compare the out-of-

sample forecast performance of predictors (see e.g., Campbell and Thompson, 2008), as a

benchmark calculated over the expanding window. The estimate of variance is obtained

by calculating the sample variance using an expanding window as well.15

15We also employed the GARCH model to obtain the estimate of variance. The corresponding utility
gains results showed us similar qualitative and quantitative portfolio performance. For easier comparison
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There are different values of the risk aversion coefficient γ used in the literature: γ = 2

in Ferreira and Santa-Clara (2011), γ = 3 in Campbell and Thompson (2008), and γ = 5

in Gao et al. (2018). The higher the risk aversion coefficient, the lower the risk tolerance;

and thus investors will invest less wealth on the market portfolio. In addition, we also

consider γ = 10 to account for an even lower risk-tolerance case.

We impose the weight constraints for the market portfolios of different investment policy

ranging from −4 to 4. This is because day traders in the US are allowed to use up to 4 : 1

margin leverage according to the day-trading margin requirements.16 In practice, we can

short the SPY directly or buy the leveraged inverse ETFs (short ETFs or bear ETFs).17

We implement these portfolio policies according to the predetermined weights ωt,τ of

Eq. (10) and thus the portfolio return on day t+ 1, ρt+1,τ is

ρt+1,τ = ωt,τrt+1,τ subject to − 4 ≤ ωt,τ ≤ 4, (11)

where rt+1,τ is the realized return on the market portfolio during the time interval τ × 5

minutes on day t + 1. We iterate this process over the out-of-sample period from March

10, 2009 to December 31, 2013 and get a time series of portfolio returns for each trading

strategy. Since we employ the CER of each trading strategy to measure utility gains, we

can compare the performance of the strategies that we use the unconditional historical

mean (HM), and the parametric CumRe and the non-parametric CumRe both conditional

on the overnight return to forecast the expected return. The CER of each portfolio is given

with existing results in the literature, we use sample variance, σ̂2
t+1,τ =

∑t
s=1(rs,τ−r̄τ )2

t−1 , as investor’s
estimate on the variance of the market portfolio on day t+ 1.

16Day traders are allowed to have more leverage since their positions are short-term, and therefore
each trade is likely to experience smaller price swings compared to positions held for days, weeks, or
years. Financial Industry Regulatory Authority. Day-Trading Margin Requirements: Know the Rules.
Retrieved from http://www.finra.org/investors/day-trading-margin-requirements-know-rules. Last access
date 15-01-2019.

17For instances, Short S&P 500 (ticker symbol SH), UltraShort S&P 500 (ticker symbol SDS), and
UltraPro Short S&P 500 (ticker symbol SPXU), or Daily S&P 500 Bear 1X ETF (ticker symbol SPDN),
the Daily S&P 500 Bear 3X (ticker symbol SPXS) can deliver its 1×, 2×, or 3× inverse exposure to the
S&P 500 index. Likewise, we can go long by buying 2x and 3x Long ETFs or Bull ETFs to satisfy leverage
ratios smaller than 4. We also examined the portfolio performance for different leverage ratios, which can
be realized by trading these leveraged ETFs. We found that patterns in portfolio performance with lower
leverage ratios are similar to the results in Table 5.
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by

CER = µ̂ρ −
γσ̂2

ρ

2
, (12)

where µ̂ρ and σ̂2
ρ are the sample mean and sample variance of the realized portfolio returns

over the out-of-sample period. The higher the CER, the larger the risk-adjusted return.

Similar to Gao et al. (2018), we use the difference between the CERs of strategies using

the overnight return as the predictor and the strategies using the historical mean forecast

to measure the predictability significance. We annualize the CER by multiplying by 252

and multiply the result by 100. Thus, this measure (CER dif) can be interpreted as the

percentage utility gain per year of the conditional mean forecast based on the overnight

return instead of the unconditional historical mean forecast. A positive CER dif indicates

that the conditional forecast based on the overnight return provides higher utility gains

than an unconditional mean forecast for a mean-variance investor, ceteris paribus.

Table 5 reports the results of the out-of-sample portfolio performance for mean-variance

investors with different levels of risk tolerance18, who enter the market either during the

first or the last half-hour to open a position and then close the position after τ×5 minutes.

For the first half hour we find that portfolios constructed based on the expected returns

predicted by parametric CumRe outperform those based on non-parametric CumRe or the

unconditional historical mean forecasts for all holding periods. Among others, holding a

position for 20 minutes (τ = 4) from the beginning of each trading session delivers the

highest positive annualized returns, which also yields a Sharpe ratio of over 1. In addition,

the positive CERs in most cases imply that the conditional mean forecasts of expected

returns depending on the overnight returns usually generate higher utility gains relative to

the unconditional mean forecasts of expected returns for the mean-variance investors.

For the last half trading hour, while in the sense of constructing portfolios it is difficult

for the conditional mean forecasts to consistently surpass the unconditional mean forecasts

of expected returns for all the holding periods, there are two holding periods, 15-min

(τ = 3) and 30-min (τ = 6), particularly notable. When τ = 3, the portfolios depending

18We found results of portfolio performance corresponding to different levels of risk tolerance such as
γ = 3, 5 similar to Table 5, which are available upon request.
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Table 5: The results of portfolio performance for different levels of risk tolerance day traders. This
table shows the economic value of recursively forecasting the market return based on the overnight return
during the first and the last half-hours. We apply the predicted return as the expected return and then
construct optimal portfolios for mean-variance day traders with risk aversion coefficients of 2 and 10. We
impose portfolio constraints from −4 to 4 according to the day-trading margin requirements in the US.
The average return (Avg ret), standard deviation (Std dev), and the difference of certainty equivalent rate
of return (CER dif) between the optimal mean-variance strategies (P is short for parametric and NP for
non-parametric CumRe) and the corresponding historical mean forecast strategy (HM) are annualized by
multiplying by 252 and reported in percentages. We also present Sharpe ratio (SRatio), skewness (Skew.),
and kurtosis (Kurt.) for each strategy. Sharpe ratios calculated based on Newey-West HAC estimators
of variance are given in parentheses. The one-step ahead predicted returns are determined using the
expanding window from March 10, 2009.

−4 ≤ w ≤ 4, γ = 2
First half-hour Last half-hour

Avg ret Std dev SRatio Skew. Kurt. CER dif Avg ret Std dev SRatio Skew. Kurt. CER dif
τ = 1 τ = 1

P 6.14 8.35 0.74 (0.71) -0.15 6.36 9.15 -3.60 5.26 -0.68 (-0.64) -1.02 11.34 -3.22
NP -2.03 3.80 -0.54 (-0.53) -1.42 16.20 1.53 -0.44 4.69 -0.09 (-0.09) -0.23 6.02 0.00
HM -3.64 2.60 -1.40 (-1.50) -4.06 65.18 -0.44 4.70 -0.09 (-0.09) -0.23 6.02

τ = 2 τ = 2
P 17.29 11.59 1.49 (1.51) 0.25 3.01 18.93 -1.26 8.61 -0.15 (-0.14) -0.08 5.45 2.23
NP 2.14 9.66 0.22 (0.23) 0.24 3.75 4.18 -3.75 6.40 -0.59 (-0.58) 0.02 8.16 0.07
HM -2.53 6.74 -0.38 (-0.42) -0.05 4.62 -3.79 6.59 -0.58 (-0.57) 0.11 8.24

τ = 3 τ = 3
P 20.43 14.75 1.38 (1.44) 0.23 3.39 20.01 8.13 11.63 0.70 (0.63) -0.47 7.37 -12.08
NP 6.76 13.67 0.49 (0.52) 0.32 4.52 6.64 19.24 11.52 1.67 (1.60) 0.21 7.18 -0.94
HM -1.58 4.12 -0.39 (-0.42) -0.35 3.62 20.28 11.94 1.70 (1.66) 0.15 6.61

τ = 4 τ = 4
P 22.54 15.95 1.41 (1.50) 0.12 2.23 20.72 -1.56 13.50 -0.12 (-0.11) -0.85 10.85 -10.02
NP 7.63 14.54 0.53 (0.58) 0.17 3.27 6.24 3.41 12.63 0.27 (0.25) -0.24 7.88 -4.82
HM -0.02 8.36 0.00 (0.00) -0.11 2.59 8.10 12.11 0.67 (0.69) 0.59 10.89

τ = 5 τ = 5
P 18.47 18.21 1.01 (1.08) 0.49 4.28 14.93 3.38 15.49 0.22 (0.20) -0.31 8.82 6.83
NP 5.88 17.07 0.34 (0.37) 0.53 5.55 2.73 1.01 12.89 0.08 (0.07) -0.37 17.94 5.20
HM 2.79 16.00 0.17 (0.19) 0.00 2.95 -5.38 6.81 -0.79 (-0.91) -0.68 18.19

τ = 6 τ = 6
P 12.13 19.94 0.61 (0.66) 0.70 4.35 12.05 20.33 19.25 1.06 (0.99) 0.36 13.83 22.16
NP 1.72 17.20 0.10 (0.11) 1.03 8.26 2.67 16.09 17.20 0.94 (0.86) 0.63 22.02 18.66
HM -2.68 11.04 -0.24 (-0.26) 0.00 3.86 -5.16 6.14 -0.84 (-1.02) -1.48 28.43

−4 ≤ w ≤ 4, γ = 10
First half-hour Last half-hour

Avg ret Std dev SRatio Skew. Kurt. CER dif Avg ret Std dev SRatio Skew. Kurt. CER dif
τ = 1 τ = 1

P 4.74 7.46 0.64 (0.60) -0.21 10.75 2.71 -2.01 1.98 -1.02 (-0.89) -4.74 63.77 -2.01
NP -0.41 0.76 -0.53 (-0.53) -1.41 16.16 0.32 -0.15 1.01 -0.14 (-0.15) -0.32 6.51 0.00
HM -0.74 0.53 -1.39 (-1.50) -4.75 80.00 -0.15 1.01 -0.15 (-0.15) -0.32 6.51

τ = 2 τ = 2
P 14.27 10.31 1.38 (1.37) 0.35 5.47 9.59 -2.57 7.03 -0.37 (-0.35) -0.24 11.36 -3.99
NP 0.52 2.45 0.21 (0.22) -0.11 7.73 0.86 -0.95 1.51 -0.63 (-0.64) -0.58 14.21 -0.02
HM -0.55 1.38 -0.40 (-0.45) -0.06 5.29 -0.92 1.60 -0.57 (-0.58) -0.09 11.28

τ = 3 τ = 3
P 16.77 13.02 1.29 (1.33) 0.32 6.14 8.64 5.30 9.82 0.54 (0.47) -0.70 13.97 -6.21
NP 2.01 6.56 0.31 (0.31) -0.85 40.73 0.21 7.71 4.46 1.73 (1.65) 0.47 5.80 0.02
HM -0.32 0.82 -0.38 (-0.42) -0.35 3.62 7.80 4.71 1.65 (1.58) 0.59 7.31

τ = 4 τ = 4
P 17.05 13.91 1.23 (1.27) 0.23 4.66 7.53 -2.12 10.21 -0.21 (-0.18) -1.19 28.62 -8.53
NP 2.31 6.92 0.33 (0.34) -1.73 36.83 0.06 1.18 5.42 0.22 (0.19) 1.51 75.09 -1.49
HM 0.00 1.67 0.00 (0.00) -0.11 2.59 1.58 2.75 0.58 (0.59) 0.53 9.28

τ = 5 τ = 5
P 12.70 16.17 0.79 (0.83) 0.69 7.80 -0.39 1.30 13.10 0.10 (0.09) -0.37 16.76 -6.11
NP 2.04 9.23 0.22 (0.23) 0.13 27.85 -2.24 1.65 8.14 0.20 (0.18) -0.11 41.83 -0.49
HM 0.54 3.21 0.17 (0.18) 0.00 2.90 -1.08 1.36 -0.79 (-0.91) -0.68 18.19

τ = 6 τ = 6
P 7.54 17.40 0.43 (0.47) 0.99 8.25 -6.81 15.45 16.99 0.91 (0.84) 0.56 23.35 2.12
NP -1.65 7.44 -0.22 (-0.24) -0.35 37.49 -3.64 12.02 12.15 0.99 (0.87) 2.22 63.76 5.74
HM -0.54 2.21 -0.24 (-0.26) 0.00 3.86 -1.03 1.23 -0.84 (-1.02) -1.48 28.43

25



on the non-parametric CumRe perform similar to those depending on the unconditional

mean forecasts; and these portfolios always yield the highest (HAC) Sharpe ratios (larger

than 1) among portfolios across all holding periods, which is even higher than the most

profitable case that the weights on the market portfolios depend on the expected returns

predicted by parametric CumRe with a holding period of 30-minute.

Notice that given that a day trader with a risk aversion coefficient of 2 invests on the

market portfolio for the last half hour, the annualized CER dif of the portfolio depending

on the overnight return, 22.16% per year, is 15.55% higher than the CER dif depending on

the predictors of the first and the twelfth half-hour returns in Gao et al. (2018) (6.61% in

Table A.7 in the Appendix). This is because we impose the portfolio constraint that the

weight on the market portfolio lies inside [−4, 4], while the constraint in Gao et al. (2018)

is [−0.5, 1.5]. If the constraint is the same, CER dif of the portfolio based on the overnight

return is 7.57% and this portfolio yields a higher Sharpe ratio of 1.19. The unconstrained

portfolio based on the overnight return generates an annualized return of 244.57% with a

Sharpe ratio of 1.06 for the last half-hour.

We observe that the distributions of returns of portfolios depending on parametric

and non-parametric CumRe have asymmetries and excess kurtosis. The Jarque-Bera test

results suggest that these return series are not normally distributed with highly statistical

significance. Autocorrelation and heteroskedasticity are present in these return series.

While the measure of CER dif provides some qualitative evidence, it is not based on

proper statistical inference procedure. In order to introduce proper inference, we use a

related measure, which we refer to as Realized Utility (RU),

RUt,τ = ωt,τ · rt+1,τ −
γ

2
ω2
t,τ σ̂

2
t+1,τ , (13)

where σ̂2
t+1,τ is variance forecast for which we use the GARCH (1,1) model. For comparison

with the CER dif results in Table 5, we use the same weights, ωt,τ .

To compare the realized utilities depending on non-parametric (RUN) and parametric

CumRe (RUP) for an investor who has a risk aversion coefficient of γ, we define the Diebold-
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Mariano test statistic as t-statDM = d̄γ√
σ̂2
dγ
/P
, where dγ is the difference between RUN

and RUP, σ̂2
dγ

is a HAC robust estimator of variance to account for serial correlations

and heteroskedasticity in portfolio return series over the evaluation period. A positive d̄γ

indicates that the portfolio constructed based on non-parametric CumRe on average yields

higher utility gains relative to that based on the parametric CumRe to investors with the

risk aversion coefficient γ. Similar to CER dif, we measure the realized utility gains in

percentage and annualize dγ by multiplying by 252.

Table 6: Constrained and unconstrained realized utility results according to Eq. (13). For
easier comparison, we measure realized utility gains in percentage and annualize the dif-
ference between the realized utilities depending on non-parametric and parametric CumRe
by multiplying by 252. The Newey-West (1987) robust t-statistic are given in parentheses.

−4 ≤ w ≤ 4
First half-hour Last half-hour

τ = 1 τ = 2 τ = 3 τ = 4 τ = 5 τ = 6 τ = 1 τ = 2 τ = 3 τ = 4 τ = 5 τ = 6
d̄2 −7.32∗∗ −14.65∗∗∗ −13.42∗∗ −14.42∗∗ −12.21∗ −9.05 3.20∗∗ −1.74 10.99 4.89 −0.57 −1.90

(−1.99) (−2.79) (−2.14) (−2.41) (−1.87) (−1.45) (2.00) (−0.36) (1.60) (1.08) (−0.16) (−0.59)
d̄10 −1.44 −7.88∗ −7.07 −5.66 0.08 4.08 1.99∗∗ 5.20 7.21 7.48∗∗ 7.67∗∗ 9.14∗∗

(−0.41) (−1.81) (−1.61) (−1.24) (0.02) (0.72) (2.22) (1.55) (1.51) (2.11) (2.15) (2.34)
Unconstrained Weights

First half-hour Last half-hour
τ = 1 τ = 2 τ = 3 τ = 4 τ = 5 τ = 6 τ = 1 τ = 2 τ = 3 τ = 4 τ = 5 τ = 6

d̄2 40.23 103.29 176.16∗∗ 161.49∗∗ 260.48∗∗∗ 276.76∗∗∗ 11.31∗ 81.15∗∗ 57.57 33.21 80.78∗ 113.15∗∗

(0.79) (1.29) (2.29) (2.23) (2.99) (3.17) (2.48) (2.14) (1.07) (1.33) (1.95) (2.09)
d̄10 8.05 20.66 35.23∗∗ 32.30∗∗ 52.10∗∗∗ 55.35∗∗∗ 2.26∗ 16.23∗∗ 11.51 6.64 16.16∗ 22.63∗∗

(0.79) (1.29) (2.29) (2.23) (2.99) (3.17) (2.48) (2.14) (1.07) (1.33) (1.95) (2.09)

Table 6 reports the realized utility difference between the portfolios constructed de-

pending on the non-parametric CumRe and the parametric CumRe forecasts. We find

that, with the day-trading margin requirements in the US, trading based on parametric

CumRe predictions during the first half hour can generate significantly higher realized

utilities for mean-variance investors with lower level of risk aversion (γ = 2); however, non-

parametric CumRe forecasts provide significantly higher realized utilities for higher level of

risk aversion (γ = 10) investors during the last half hour. Recall the twisting shape of non-

parametric CumRe predictions and the linear shape of parametric CumRe predictions in

Figure 3, employing parametric CumRe predictions may lead to the magnitude of weights

determined according to these predictions being higher than those determined according
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to non-parametric CumRe predictions, since 99% of the observations of overnight returns

range between -2.5% and 2.5% over the evaluation period. In the absence of day-trading

margin requirements for day traders, the trading strategies depending on non-parametric

CumRe forecasts yield significantly higher realized utility gains relative to strategies de-

pending on parametric CumRe forecasts.

6 Conclusion

Our results show that it is possible to forecast the subsequent intraday patterns in market

returns based on observed market overnight returns (close-to-open returns) with both sta-

tistical and economic significance. Our forecasting approach CumRe confirms the intraday

patterns in returns documented in the existing theoretical and empirical literature, such

as the opposite trends during the beginning period and the closing period within the same

trading day (Hong and Wang, 2000); a short-term market overreaction to information is

possible in the opening, while the under-reaction effect is likely at the close (see e.g., Ami-

hud and Mendelson, 1987); the positive or negative relationship depending on the overnight

returns during the first or the last half trading hours (Liu and Tse, 2017; Gao et al., 2018).

Moreover, the overnight returns help predict the market directions within the first and the

last half trading hours. In addition, provided that the dependence between the overnight

returns and certain subsequent intraday returns is statistically significant, the magnitudes

and the signs of the overnight returns can also help forecast the expected returns and thus

yield higher annualized returns, Sharpe ratios, and certainty equivalent returns than the

unconditional mean pattern forecasts of the expected returns—one-step-ahead (cumula-

tive) forecasts based on a recursive approach—for mean-variance day traders.

We find non-linearities in return patterns. The non-parametric CumRe can accom-

modate nonlinear dependence between the overnight returns and the subsequent intraday

returns, while the parametric CumRe only accounts for linear relationship. Based on

transaction-level data of SPDR S&P 500 ETF from January 1, 2003 to December 31,

2013, which is an exchange-traded fund that closely tracks the S&P 500 index with the
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smallest bid-ask spread, we find that, statistically, non-parametric CumRe improves the

out-of-sample forecast performance in terms of the Diebold and Mariano (1995) type test

statistic and the leave-one-year-out cross-validation errors.

There are a number of possible extensions to predict intraday returns based on overnight

returns. First, it might be helpful to incorporate ARMA and/or GARCH structure into

the forecast methods or to take the asymmetry and fat-tails in returns into account when

forecasting the intraday returns. Second, one might wonder whether overnight returns

could be used as a predictor for other financial markets such as futures, currencies, and

commodities. Third, we wonder whether this intraday market predictability can contribute

to volatility forecasting and thus influences the performance of the portfolios constructed by

both conditional mean and variance forecasts depending on the overnight returns. Fourth,

as stated by Brandt (2010), the mean-variance problem ignores any preferences toward

higher-order return moments, and thus we would be interested in the portfolio performance

if the weights on the market portfolio are determined by a higher-order approximation of

expected utility maximization. We leave these for future work.
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Appendix A Correlation Matrix

This table reports the correlation coefficients between the overnight returns and the subse-

quent intraday returns during the first and the last half hours. The variable ovr is short for

overnight returns. The variables yft,τ and ylt,τ denote the τ th element, where τ = 1, . . . , 6 of

the first and last half hour return pattern, respectively. The sample period is from January

1, 2003, to December 31, 2013.

Table A.1: Correlation Matrix.
ovr yft,1 yft,2 yft,3 yft,4 yft,5 yft,6 ylt,1 ylt,2 ylt,3 ylt,4 ylt,5 ylt,6

yft,1 1.00 0.65 0.47 0.46 0.45 0.45

yft,2 1.00 0.76 0.69 0.65 0.63

yft,3 1.00 0.87 0.81 0.74

yft,4 1.00 0.91 0.84

yft,5 1.00 0.93

yft,6 1.00
ylt,1 1.00 0.72 0.54 0.40 0.38 0.36
ylt,2 1.00 0.75 0.62 0.59 0.54
ylt,3 1.00 0.87 0.79 0.70
ylt,4 1.00 0.88 0.79
ylt,5 1.00 0.91
ylt,6 1.00
ovr 1.00 -0.09 -0.15 -0.18 -0.17 -0.20 -0.18 0.00 0.07 0.10 0.07 0.12 0.19
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Appendix B Intraday Return Patterns

Figure B.1: Non-parametric CumRe: Predicted return pattern conditional on overnight
returns (−1%, 0%,+1%). The outer grey shade is 80% prediction interval, the inner shades
are respectively 90% and 95% prediction intervals. The predicted return is in percentage,
and ovr is short for overnight return in the legend. Note that we take a relatively conser-
vative overnight return 1% as an example. These patterns are more striking based on a
larger magnitude of overnight return.
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Figure B.2: Non-parametric CumRe: Predicted return pattern conditional on overnight
returns (−1%, 0%,+1%). 80% prediction interval is shaded in red, 90% – light red and
90% – light grey. The intraday returns series are standardized by Ỹt,τ = Yt,τ

σ̂t
, where σt is

the conditional standard deviation of Yt,τ , σt is estimated by realized volatility (the square
root of the realized variance). The predicted returns are in percentages, and ovr is short
for overnight return in the legend.
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Figure B.3: Non-parametric CumRe: Predicted return pattern conditional on overnight
returns (−2.5%, 0%,+2.5%). 80% prediction interval is shaded in red, 90% – light red and
90% – light grey. The intraday returns series are standardized by Ỹt,τ = Yt,τ

σ̂t
, where σt is

the conditional standard deviation of Yt,τ , σt is estimated by realized volatility (the square
root of the realized variance). The predicted returns are in percentages, and ovr is short
for overnight return in the legend.
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