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Abstract

We present a TriSNAR modeling framework for understanding the dynamic inter-

actions of multiple markets for Bitcoin trading, including market efficiency, and for

identifying influential exchanges in the global trading network. We consider two types

of influential exchanges from the perspectives of investors, regulators, and policymakers:

exchanges that are market leaders and exchanges potentially used for market manipu-

lation. Among 194 Bitcoin exchanges, we find that exchange Kraken was the leading

exchange prior to the market frenzy of 2017. We also find a fraud-related exchange

(Bitfinex) where some other exchanges display a similar role in the price discovery net-

work than this exchange, raising questions about whether they may also be used for

fraudulent activities. In addition, price discovery shows that the Bitcoin exchange net-

work has been decreasing in efficiency from 2015 to 2017, and it has been increasingly

efficient since 2018. We investigate the finite sample and asymptotic properties of TriS-

NAR. Compared to alternative methods, TriSNAR outperforms in terms of accuracy,

runtime, and ability to discover multi-market network structures.

Keywords: Influencer Identification, Market Efficiency, Fraud Detection, Structure Detec-

tion, Bitcoin Exchanges

JEL classification: C01, C55, C58, G14

∗The authors are thankful for helpful discussions and comments by Frank Kleibergen, Roland Füss,
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1 Introduction

Technological advances and globalization have begun to reshape the trading and investment

ecosystem. One notable change is the increase in cross-listing of financial products on

multiple exchanges to raise more capital and liquidity. This market fragmentation, coupled

with modern developments in exchange infrastructure, has been accompanied by billions of

orders and executions. It has become increasingly important for investors, regulators and

policy makers to assess and understand the impact of dynamic multi-market interactions

and information flows in large-scale global financial networks. When each exchange is viewed

as an individual in a global trading network, its price formation is not only subject to local

supply and demand, but may be influenced more by price information from its competing

markets. On some of these exchanges, the competing markets are considered to be signal

providers for dynamic price discovery. They become more influential by leading future price

movements and opening up arbitrage opportunities in the market, see (Eun and Shim, 1989;

Lin et al., 1994; Asgharian et al., 2013; Chen et al., 2002). Meanwhile, monitoring of some

exchanges is important because fraud on these exchanges, such as market manipulation,

can have a strong spillover effect on global price discovery. This has prompted thinking

about how to identify these influential exchanges and the role they play in price discovery

and market efficiency.

An increasingly important financial multi-market trading network is the widely unreg-

ulated Bitcoin (BTC) market. BTC is traded simultaneously on a plethora of exchanges

worldwide. These exchanges trade BTC against currencies such as the US dollar or other

cryptocurrencies (CCs) including the stablecoin USDT, which is pegged to the US dol-

lar. Unlike traditional stock exchanges, the BTC market has neither market closures nor

national borders. The synchronized global trading of BTC with other currencies and the

increasing importance of Bitcoin due to events like the recent emergence of being made

official currency of El Salvador, has prompted thinking about which of the exchanges are

more influential. As nodes in the network, the trading activity of these exchanges affects

price discovery, influencing the price of the entire BTC trading network and further affecting

market efficiency.

Extensive research has been conducted to study the dynamic behavior of networks con-

sisting of multiple CC exchanges on global price discovery. Makarov and Schoar (2019)

investigate a network of five CC exchanges during the 2017 market frenzy, from which

they found one exchange (Bitfinex) to have a large impact on price discovery. Alexander

et al. (2020) find that the BitMEX derivatives exchange has a leading effect on BTC spot

prices on three exchanges. Makarov and Schoar (2020) examine arbitrage on CC exchanges.

Capponi and Jia (2021) analyze decentralized exchanges and the implications of the use of

automated market makers. Griffin and Shams (2020) find that market frenzy in 2017 was
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accompanied by price manipulation of the BTC/USDT pricing series. Cong et al. (2021)

examine the problem of fake liquidity on CC exchanges, also known as wash trading. These

findings highlight the importance of understanding the role of multiple exchanges in BTC

price discovery. In this study we are investigating a network of 194 CC exchanges which

trade either BTC against USD or USDT, the latter being a stablecoin pegged to the USD,

for their lead behaviour on the BTC price discovery. The results contribute to a better

understanding of BTC price discovery, influential exchanges and market efficiency, as well

as market price manipulation.

The study of the dynamic interactions of multi-market networks is not new. In the

finance, economic and econometric literature, the dynamic interactions of various interna-

tional networks have been investigated, such as economic exposure networks (Pesaran et al.,

2004), EU networks (Dees et al., 2007), risk networks spanned by financial firms (Diebold

and Yılmaz, 2014; Härdle et al., 2016), exchange rate and credit risk ratings (Creal et al.,

2013), company networks (Rapach et al., 2013; Barigozzi and Brownlees, 2019), social net-

works (Chen et al., 2021; Kline and Tamer, 2017; Zhu et al., 2017), and Euro-zone bank

networks (Bonaldi et al., 2015). The role of multi-market networks in price discovery has

also been studied. Gagnon and Karolyi (2013) find that cross-listing in multiple markets

matters for price discovery, while Chen et al. (2013) study the particular price discovery

in two markets. Gagnon and Karolyi (2010) study the trading behavior of multiple mar-

kets and the resulting arbitrage opportunities. Halling et al. (2013) study the similarity

of cross-listed firms in markets with high trading volumes. Lin et al. (1994), Asgharian

et al. (2013), Chen et al. (2002), study the connectivity across sets of stock markets. In

terms of cryptocurrency markets, Guo et al. (2019) study the network structure of cryp-

tocurrency markets and Chen et al. (2018) consider the network connectivity within the

BTC blockchain. While there are different underlying categories, the presence of dominant

entities and interactions suggests that the answer to the question of multi-market price

discovery mechanisms relies on the investigation of lead-lag time effects in the span of these

networks. This has motivated the use of vector autoregressive (VAR) models to describe

the network dynamics between multiple series and facilitate their interpretation, providing

valuable information for inference and aiding prediction accuracy (Tsay, 2016).

However, for high dimensions or when multiple lags are involved, VAR models quickly

become overparameterized and experience difficulties in convergence. Even for a moder-

ate number of dimensions, the model structure is often overparameterized. This leads to

potentially inaccurate estimates and also impairs the understanding and interpretation of

the model. Basu and Michailidis (2015) argue that meaningful (interpretable) estimation

and inference of large-scale VAR models is often not possible without imposing structural

assumptions. The sparse structure of the parameters present in economic and social net-

works has been supported by a large body of empirical evidence and domain knowledge,
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(de Paula, 2017). This also applies to networks where BTC is traded in multiple markets.

A plethora of estimators have been developed based on the assumption of sparse struc-

ture. Tibshirani (1996) proposes the least absolute shrinkage and selection operator (LASSO)

for sparse estimation using a soft threshold operator. Other approaches suggest the use of

hard threshold functions; see Antoniadis (1997). To overcome the discontinuity of the hard

threshold operators, several unbiased and continuous regularization estimators have been

proposed, such as the smoothed clipped absolute deviation (SCAD) (Fan and Li, 2001) and

an adaptive LASSO (Zou, 2006). All these estimators are proposed for regression mod-

els. For multivariate time series data, Song and Bickel (2011) propose a two-stage VAR

approach that penalizes the lagged parameter matrix, columns, and individual parameters,

respectively. Davis et al. (2016) develop a two-step approach for network autoregressive

(NAR) models to study dynamic interconnections of large-scale networks under sparsity.

Both methods translate into a hard threshold operator. Nicholson et al. (2017) consider

various structured VAR models with LASSO and sparse group penalty functions (Simon

et al., 2013) to construct soft threshold estimators. Basu et al. (2019) propose a VAR(1)

model for reducing the rank and parameter of the underlying structure such as the network

structure matrix. Lin and Michailidis (2017) study block VAR models, while Skripnikov and

Michailidis (2019) combine a group LASSO and LASSOs to jointly estimate several VAR

models. Bayesian VAR models have been extensively studied; see, for example, Ghosh et al.

(2019).

Figure 1 shows the estimated parameter matrices for BTC trading on the 80 most liquid

exchanges by average trading volume from January 1, 2016 to December 31, 2018 under the

VAR (3) framework. We see that most of the columns contained in each matrix are shown

in light red/blue, which indicates that the respective parameters are very close to zero, i.e.,

there is no connectivity. At the same time, some columns have many parameters that differ

significantly from 0, reflecting the emergence of sparsity in the BTC multi-market trading

network structure, i.e., one exchange has an impact on some exchanges but may not have an

impact on others. Furthermore, the serial dependence between price discovery at different

times raises the question of whether all the three lags are needed, or whether fewer lags

are sufficient to describe the underlying lead-lag links. The location, type and structure of

these parameters are usually unknown. This motivates us to define a network autoregressive

(NAR) model that applies regularized estimation to the network of transactions between

exchanges. It contains three types of sparsity in the temporal network:

• lags that model the temporal impact of the entire multi-market network on all ex-

changes,

• columns in the active NAR parameter matrix, reflecting the group effect of one ex-

change on all other exchanges (influencers), and
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Figure 1: The 3 matrices are the VAR(3) parameter matrices of the top 80 exchanges
considered in the study by their trading volume, estimated on the interval 01.01.2016 until
31.12.2018. The left matrix corresponds to lag 1, the right one to lag 3.
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• elements within the activity group, reflecting individual effects, i.e. interactions be-

tween any two exchanges.

To study price discovery and market efficiency among BTC exchanges, we propose a

model specifically designed to identify leading exchanges (influencers) in multi-market net-

works, called the 3- layer Sparse estimator for large-scale Network AutoRegressive models

(TriSNAR). In contrast to classical VAR model, TriSNAR aims to detect the network struc-

tures in order to decipher their economic implications, e.g., to find influential nodes in a

dynamic network structure. The estimation is performed under triple sparsity of lags,

groups and individuals. We develop efficient and fast algorithms that sequentially optimize

the large-scale estimation for each of the three layers. We also provide an approximate opti-

mization algorithm to achieve fast convergence of the regularized estimates. We determine

asymptotic properties of the sparse estimator under the assumption of fixed dimensionality

and show that TriSNAR has the three properties of a good sparse estimator as defined by Fan

and Li (2001), namely, unbiasedness, sparsity, and continuity. In an extensive experiment

with synthetic data, TriSNAR provides good accuracy while revealing the true structure,

which greatly improves the interpretability of the dynamic structure of the network.

There are several existing sparse estimators for VAR/NAR models. TriSNAR differs

from them in the following aspects. Davis et al. (2016) and Kock and Callot (2015) focus

on the individual effects between the two processes. The sparse estimator neither cover the

group effect of one process on the entire network nor the serial dependence effect of the

system. Chen et al. (2018) and Nicholson et al. (2017) consider any two of the three effects,

but do not cover all of them. Song and Bickel (2011) promote triple sparsity; however, their

approach does not possess the three properties of a good estimator.

We apply TriSNAR to price discovery in a BTC multi-market trading network. We

find that many influential exchanges existed before the market frenzy in 2017, a vanishing
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structure is observed in 2018, and from 2019 onwards, there are hardly any exchange leaders

left to be identified. It is worth noting that exchange Kraken had a full year of influence on

price discovery across the network, from April 2016 until March 2017. As such, it reveals the

possible existence of market inefficiency. Based on the relationship between price discovery

and market efficiency, we find that prior to 2018, the BTC market was inefficient provided

various exchanges influenced prices. From 2018 onwards, the market efficiency of BTC has

improved given the absence of influential exchanges.

We investigate market manipulation and fraudulent behaviours. Griffin and Shams

(2020) argue that market prices were manipulated through the Bitfinex exchange during

the 2017 market frenzy. Through TriSNAR, we determined that Bitfinex was the only

influential exchange during this period, supporting the claim of price manipulation. In

further investigation, we find that the exchange BitZ was influential in price discovery in

Q4 2018, which raises questions about whether this exchange was also used to manipulate

the market. Meanwhile, while intense market volatility also occurred in early 2021, our

analysis shows that no exchange influenced price discovery during this period, including this

particular exchange. It projects that the market frenzy in 2021 was structurally different

from that of 2017.

This paper is structured as follows: In Section 2 we describe and analyse the data. We

present TriSNAR, the model framework and provide a detailed description of the penaliza-

tion operator in Section 3. In Section 4, we study the BTC price discovery network with

TriSNAR and various other network models, in regards to influential exchange identifica-

tion, price discovery network efficiency and fraud detection. In Section 5, we investigate the

finite-sample performance in a synthetic data study. Section 6 concludes. The code used in

this paper is available at GitHub.

2 Data description

In this study we consider the network relations between 194 BTC exchanges over a time

period of 5.5 years. Among the exchanges, not all allow trading against the USD, e.g.,

Poloniex and Binance, some only offer trading against other CCs including stablecoins like

USDT which is pegged to the USD. To study the behaviour of the price dynamics between

the exchanges and to identify influential exchanges which contribute to the price discovery,

we collect hourly Bitcoin time series in USD and USDT from 194 CC exchanges in the time

period 01.01.2015 until 11.05.2021. Since USDT is pegged to the USD, the BTC/USDT

time series can be treated as similar to BTC/USD. Some exchanges offer trading of Bitcoin

against both, USD and USDT. In this situation we take the weighted average of the two

time series, whereas we weight the two time series by their trading volume occurring at the
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particular hours. By this we have a single exchange rate BTC/USD for each of the 194

exchanges.

As we are interested in studying the price discovery between the exchanges, we start

by analysing the exchanges for their time series properties. Various of the exchanges are

only active for a fraction of the overall time period, which is a challenge for a multivariate

time series analysis. To overcome this difficulty, we intend to split the dataset into subsets

and analyse the network structure within the subsets. Further various of the exchanges

are subject to low trading volume. For a first investigation, we fit a VAR(3) model to the

returns of the 80 most liquid exchanges over two different time periods, namely 01.01.2016

until 31.12.2018 and 01.01.2019 until the end of the time period. We cut off 2015 because

only a few exchanges are active in that year and their inclusion would lower the dimension

of the VAR model too much. We plot the parameters of the VAR(3) as a heatmap and for

illustration purposes we constrained parameters outside of the interval [−1, 1] to the interval

boundaries, see Figure 2. A column in each heatmap contains the parameters at t− k with

k ∈ {1, 2, 3} of one exchange as related to the returns at t of all other exchanges. A column

with parameters almost entirely different from 0 indicates that exchange is leading the price

discovery on the other exchanges, hence the exchange acts as an influencer. Vice versa if

a row has time lagged influence of all exchanges towards a single one, it indicates that one

exchange lags behind the others in the price evolution. We observe that only a few columns

have parameters which are clearly different from 0 which indicates the presence of leading

exchanges. Further we observe a difference in the parameter matrices between the two time

periods which suggests that the relationship is not constant over time, instead dynamic in

nature. For various columns the parameters are close to 0, which indicates that a sparse

estimation of the matrices is called for.

In the data matrix the exchanges are ordered by the size of the average trading volume.

Since the exchanges with a larger influence are scattered over the full spectrum of the

parameter matrix, this indicates that trading volume is not a predictor for a leadership role

of an exchange in the price discovery network. In Figure 3 we compare the average trading

volume on an exchange against the standard deviation in its trading volume. We observe

that a high trading volume usually also comes with a higher variation and that there are

some exchanges with considerably higher trading volume than others. The sparsity in the

VAR parameter matrix estimation and the missing link between a high trading volume and

a leadership role in the price discovery network motivates an investigation of the network

with sparse network methods.

We established that the a lead-lag relationship exists between the exchanges which is

dynamic over time. Taking into account that investors observe the price evolution on all

the exchanges and incorporate the corresponding information into their trading decisions,

we address the following questions:
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Figure 2: Upper 3 matrices are the VAR(3) parameter matrices estimated on the interval
01.01.2016 until 31.12.2018, lower 3 matrices are estimated on the interval 01.01.2019 until
11.05.2021. The left matrix corresponds to lag 1, the right one to lag 3.
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Figure 3: The average trading volume on 80 exchanges plotted against its standard deviation
in the trading volume in the time period 01.01.2016 until 11.05.2021.
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- The inter-exchange network between traders on different exchanges is not directly ob-

servable, although respective traders observe the price evolution on other exchanges.

This raises the question of whether there is information flow such that traders on

certain exchanges influence those on others on a regular basis, and thus, certain ex-

changes essentially serve as influential network nodes?

- Is time a factor, or, more specifically, do multi-market interactions last for only one

period or are they continuously present over several periods?

- What is the relationship between arbitrage and the leadership of exchanges? Do

different exchanges contribute to the price discovery when arbitrage opportunities

widen/narrow?

- Is a change in the network relation between exchanges connected to the overall market

liquidity?

- When fraudulent behaviour appears on an exchange, that exchange would take on a

leading role in the price discovery network since the price manipulation would make

it the dominating network node. Hence, are the identified leading exchanges in the

network linked to price manipulation?

- How is the connectedness of exchanges related to the state of the CC market?

We established that the data are subject to sparsity with many parameters close to

0. Motivated by this and to study the price discovery between the Bitcoin exchanges, we

are going to apply the LASSO and SCAD methods to study the relationship between the

exchanges. However these methods do not take into account that the different lags of a

VAR model have an inherent different relation to the contemporaneous observations, which

leads us to use the ‘tapered LASSO’ method of Nicholson et al. (2017) as well. Though none

of these methods are designed to uncover influencers in the network structure. As observed

in Figure 2, certain exchanges appear to act as influencers and hence have leadership roles

in the price discovery network. As to uncover such network structures, we are proposing

a network estimator called TriSNAR, Three-Layer Sparse Network AutoRegression. The

estimator, which we are introducing in Section 3, is designed to uncover leading nodes

(influencers) in the described network structures and we are going to study its theoretical

properties as well as show its finite sample performance as compared to the three other

methods used in this study.

3 TriSNAR for Large-Scale Network AutoRegressive Models

Let Yt ∈ Rd denote a vector of observations of a network with d-dimensional processes

at time point t ∈ {1, . . . , T}, with the length of the time period T . Assume there are p
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parameter matrices Ak with k ∈ {1, . . . , p}, which are of dimension d× d and measure the

serial dependence of the d processes. The Network AutoRegressive (NAR) model describes

the serially linear dependencies between these processes. The matrices Ak are assumed to

have a sparse ‘network’ structure, as illustrated in Sections 1 and 2, and thus some variables

have no influence on others at all. This means, the parameters are Ak;ij = 0 for some k, j

and all i. Given time lag k, Ak has either of the following structures:

Ak



Ak;ij = 0, ∀i, j

Ak;ij = 0, ∀i and some j ∧Ak;ij ̸= 0 otherwise

Ak;ij = 0, for some i, j ∧Ak;ij ̸= 0 otherwise

Ak;ij ̸= 0 otherwise

(1)

where the first two cases inspire the need of a NAR model. In the first case, there is no

influence from any variable j to any i (no influential network effect in lag k). In the second

case, some variables j do not influence any i (no influential network effect from variable

j at lag k). In other words, some variables do not affect others at all or just at certain

time lags, which represents no-influential-network effect. Others are influential network

variables (influencers) and the influence of these variables j on variables i at time lag k will

be Ak;ij ̸= 0. This definition relates to Figure 1 and the sparse network structure in the

corresponding VAR model. The NAR is defined as

Yt = A0 +

p∑
k=1

AkYt−k + ϵt (2)

where A0 = (a1,0, . . . , ad,0)
⊤ is the intercept and ϵt = (ϵ1,t, · · · , ϵd,t)⊤ is a vector that is

assumed to be independently and identically distributed with ϵt ∼ (0,Σ). We assume that

the model is stationary and ergodic, with all roots of the polynomial Id −
∑p

k=1AkZ
k

lying outside the unit ball. Though the definition is in a VAR framework, it differs in the

described influencer network structure of the parameter matrices, see equation (1).

Our interest is in detecting the influential variables and their dynamic dependence struc-

ture in the network to help us understand the multi-market interactions. For an insightful

interpretation, we assume a sparse network structure, which is motivated by Figure 2. In

other words, the parameter matrices Ak for k = {1, . . . , p} are sparse, whereas the loca-

tion and form of the sparsity are not predetermined. To perform regularized estimation,

we introduce a penalty function pλ1,λ2,λ3(·) imposed on the lags, columns and individual

parameters of Ak which is designed to detect structures as described in equation (1). We
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estimate the model (2) by solving a regularized least squares optimization problem,

min
A

T∑
t=p+1

1

2
||Yt −

p∑
k=1

AkYt−k||2F+
p∑

k=1

pλ1,λ2,λ3(Ak), (3)

where λ1, λ2 and λ3 are tuning parameters for the sparsity and ||·||F is the Frobenius

norm, defined by ||Ak||F=
√∑d

i=1

∑d
j=1A

2
k;ij , with Ak;ij the i, jth entry of the matrix Ak.

The penalty function, for a suitable choice of λs, should permit the estimator to have the

properties of unbiasedness, sparsity and continuity and, further, the oracle property.

We extract the diagonal of Ak and consider the autoregressive parameters separately

as the (d + 1)th group, Ad+1;j . In other words, we describe the autoregressive effects

disentangled from the network effects. We use Ak;j to denote the column (group) j with

j = 1, . . . , d within the parameter matrixAk, yet without the jth parameter on the diagonal.

Hence, Ak;j = (Ak;1j , . . . , Ak;(j−1)j , Ak;(j+1)j , . . . , Ak;dj)
⊤. As such, the groups have (d− 1)

parameters except for the group of the autoregressive parameters, which has d parameters.

We introduce a scaling parameter dj = (d− 1) for j = 1, . . . , d and dj = d for j = (d+1) to

offset the impact of a mismatch between the number of parameters in the columns (d− 1)

and the diagonal d and apply it to the regularization parameter λ2 accordingly. We define

the penalty function by

pλ1,λ2,λ3(Ak) =



d2λ1||Ak||F ||Ak||F≤ d2λ1

djλ2||Ak;j ||F ||Ak;j ||F≤ djλ2 ∧ d2λ1 < ||Ak||F
λ3|Ak;ij | |Ak;ij |≤ λ3 ∧ djλ2 < ||Ak;j ||F ∧

d2λ1 < ||Ak||F
2bλ3|Ak;ij |−|Ak;ij |2−λ2

3
2(b−1) λ3 < |Ak;ij |≤ bλ3 ∧ djλ2 < ||Ak;j ||F ∧

d2λ1 < ||Ak||F
λ2
3(b+1)

2 bλ3 < |Ak;ij | ∧ djλ2 < ||Ak;j ||F ∧

d2λ1 < ||Ak||F

. (4)

Note that the first case d2λ1||Ak||F applies to the layer of lags. It is regularized by the

magnitude of all parameters within Ak and scales the regularization parameter λ1 by the

number of parameters, d2. The second case, djλ2||Ak;j ||F , regularizes each group j of Ak.

The 3rd to 5th cases build the regularization operator for the individual parameters first, the

soft- and tapering-off threshold, λ3|Ak;ij | and
2bλ3|Ak;ij |−|Ak;ij |2−λ2

3
2(b−1) , and the non-regularized

case
λ2
3(b+1)

2 . Here, we require b > 2.

The penalty function (4) combines the advantages of two hard-thresholding functions
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Figure 4: The three plots illustrate the three states of TriSNAR. The first plot shows the
penalization of each k lag Ak, which is penalized with a hard-thresholding function. When
the penalizing value λ1 is reached, the values are unpenalized. The second penalization func-
tion for the group steps is illustrated in the second figure, which is also a hard-thresholding
function. Next, the individual penalization function becomes active, which corresponds to
the form of SCAD for regression models.
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and a soft-thresholding and a tapering-off function. Figure 4 shows the performance of the

penalization for examples of sequences of λ by setting the scaled tuning parameters to 2

and b = 3.7. The hard-thresholding functions are applied to the lagged parameter matrices

(Fig. 4a) and the groups (Fig. 4b). The soft-thresholding and tapering-off functions, similar

to the SCAD penalty for regression models, are used for the individual parameters (Fig. 4c).

This function ensures that Ak and Ak;j are only penalized until the values d2λ1 and djλ2 are

reached. This favors the unbiasedness of the resulting NAR model. This formulation is also

grounded in the rationale that a group inside of a lagged matrix can only be unpenalized

when the entire matrix is not subject to the hard-thresholding parameter λ1.

Applying the three-layer penalty function (4), we obtain the estimator of Ak according

to several cases:

Ak =



0 ||Ak||F≤ d2λ1

0 ||Ak;j ||F≤ djλ2 ∧ d2λ1 < ||Ak||F
sgn(Ak;ij)(|Ak;ij |−λ3)+ |Ak;ij |≤ 2λ3 ∧ djλ2 < ||Ak;j ||F ∧ d2λ1 < ||Ak||F
(b−1)Ak;ij−sgn(Ak;ij)bλ3

(b−2) 2λ3 < |Ak;ij |≤ bλ3 ∧ djλ2 < ||Ak;j ||F ∧ d2λ1 < ||Ak||F
Ak;ij bλ3 < |Ak;ij | ∧ djλ2 < ||Ak;j ||F ∧ d2λ1 < ||Ak||F

(5)

The estimator is designed to detect influential variables in the network, hence to detect

a structure as defined in equation 1. We propose two algorithms for the estimation of
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TriSNAR, one being an active-set optimization algorithm denoted by TriSNARG and an

approximate one denoted by TriSNARA. We introduce TriSNARA due to its improved

runtime while it usually provides a similar result than TriSNARG as we show in the synthetic

data study, see section 5.

4 Bitcoin Price Discovery Network Analysis

We are going to analyse the network structure between the exchanges for their lead-lag

behaviour with a focus upon influential exchanges over various time periods and relate the

results to price discovery and market manipulation. Our results reveal a higher inefficiency

in the market before the December 2017 market frenzy, since we found exchanges acting

as market leaders. The exchange Kraken stands out since it is identified for an entire

year as influential for the price discovery network. We relate the discovery of influential

exchanges to the availability of arbitrage opportunities in the market at these times. We

were able to identify a single market leader while the December 2017 market turbulences,

namely Bitfinex, which is known for being the platform for BTC/USDT exchange rate

manipulations during that time period, Griffin and Shams (2020). In various other time

periods, we observe a similar network structure as the one observed for Bitfinex. For

example in 2018, we observe a similar outstanding role of the exchange BitZ, which gives

rise to the question if fraudulent behaviour took place on that exchange as well. From 2019

onwards, we observe a higher efficiency in the market with hardly any exchanges influencing

the market. Notably, before 2018 usually TriSNAR provided the best model in terms of

BIC compared to the other model contestants though from 2018 onwards mostly a different

model provided the best BIC. Since TriSNAR focuses on the identification of influencers in

networks, this underscores the observation that the influencer network structure vanished

after 2018. We conclude that the markets price discovery network became first increasingly

inefficient until the 2017 market frenzy, after which it became increasingly efficient. Overall

the network analysis and TriSNAR in particular aided us to identify influential exchanges,

identify exchanges which are linked to market manipulation and allowed us to conclude that

the market improved its efficiency over time.

4.1 Set-up

We employ TriSNAR to study the dynamic connections within the exchange network by

splitting the data into training and validation sets. In the study we use the proposed

algorithm TriSNARG, see Appendix I for the details of the algorithm. We split each year

into quarters and we take the first two months of each quarter for the model estimation and

the last month for model validation, which means we evaluate the regularization parameters

13



λ1, λ2, λ3 on the latter dataset. E.g., for the first quarter of the year 2015, we would

estimate the models on the time period 01.01.2015 until 28.02.2015 and validate the models

on 01.03.2015 until 31.03.2015. The λ1, λ2, λ3-sequences are generated from deriving the

values first for which all parameters are set to 0. From this value a halving sequence is

created for each λ until 0 is reached. For the analysis, we are deriving the log-returns from

the price series. To make an easy and interpretable comparison of the estimated parameters

possible, we adopt a GARCH(1,1) model to scale the demeaned data to unit variance, hence

the magnitudes of the parameters become comparable between exchanges and over time.

After data preparation, we perform an ADF and PP (Phillip-Perron) test on each training

dataset, see Said and Dickey (1984) and Nelson and Plosser (1982). For each dataset the

H0 of non-stationarity gets rejected. After the model estimation, we test the residuals for

stationarity with the same two tests. Again, each time the H0 of non-stationarity gets

rejected.

The dataset spans two time periods of particular interest, which are the market frenzies

of November/December 2017 and December 2020/January 2021. As to analyse the network

structure between the exchanges in this time periods, we subset the data so that the model

evaluation takes place while the market is in the wild stage until it peaked, and the esti-

mation of the models is performed on the 6 months of data before the date of the market

frenzy. As for the first subset, we subset the data between the 24.05.2017 and 17.12.2017,

and the second one between 11.06.2020 and 09.01.2021. For the first subset, we estimate the

model on the time period 24.05.2017 until 23.11.2017 and validate them on 24.11.2017 until

17.12.2017. For the second subset, we estimate the model on 11.06.2020 until 10.12.2020

and evaluate them on 11.12.2020 until 09.01.2021. As before, we consider the log-returns

and demean them as well as scale them with a GARCH(1,1) to unit variance. Since we

intend to identify the true model, we evaluate the best fitting model on the evaluation

dataset via the BIC criterion.

There exists a huge difference in the trading volume between the exchanges, see Figure

3. Exchanges with low trading volume cannot act as influencers for the price discovery,

hence we focus in each time period on the exchanges which have at least an average trading

volume of 5% of the most liquid exchange in that particular period.

4.2 Results & Chorddiagram

The results of applying TriSNAR, TLASSO, SCAD and LASSO on the time periods as

described above are summarized in Tables 1 and 2. For the 4 methods, we report the

absolute number of exchanges which were identified by the respective method as influential

for the network as well as the influential exchanges share of the absolute number of exchanges

considered in that time period. In accordance with our definition that influential exchanges
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impact all or at least a significant number of other exchanges, we mark an exchange as

influential if at least 25% of parameters associated with that exchange are nonzero. In Table

2 we report the BIC of the models and the number of selected parameters. We observe that

the networks grow over time and that in general the share of influential exchanges from

the total number decreases. We compare these results against the average trading volume

between the exchanges in that particular time period. Similarly we also report the mean over

the variance in the individual exchanges BTC/USD return series. Further we analyse the

arbitrage by deriving the spread between the exchanges price series. The spread is derived

from the mean price on each exchange, from which the difference between the min/max

of the average prices is derived and divided by the average price between the exchanges.

Provided that TriSNAR is especially designed to identify influential exchanges, we compare

via BIC in Table 2 which model fits the data best in each quarter. In case no influential

exchanges are present, either TLASSO, SCAD or LASSO are expected to outperform.

Several parameter matrices are shown to illustrate the results. The matrices are dis-

played as chorddiagrams. A chord diagram displays the direction and magnitude of the

influence of each node (Bitcoin exchange) by showing the magnitude by means of the circle

and the destination of the signal by the chord. The wider the space in the circle, the larger

the magnitude and hence the higher the dynamic impact on the network. A chord diagram

does not differentiate between positive and negative influences. The sum of the absolute

values of the parameters (magnitude) is displayed on the circle.

4.3 2015 - 2017: Market inefficiency, arbitrage and influencers

We observe from Table 1 that the spread in the price between the exchanges increases

from 2015 until Q2 of 2018. This opens up opportunities for arbitrage and would make it

useful for investors to observe the price on various exchanges and act accordingly, hence

the presence of influential exchanges could be expected. Indeed we observe that TriSNAR

identified leading exchanges from 2015-2017. Notably often just one exchange was identified.

For one year the exchange Kraken dominated the price discovery network, namely from Q2

2016 until Q1 2017, compare Figure 5. It is remarkable that this structure was observed for

an entire year, hence the dominance is persistent. Before 2016, mostly LakeBTC took on

leading roles in the price discovery network. The influence of these exchanges on the price

discovery network is underscored by the other three models, TLASSO, SCAD and LASSO.

In each of the models these exchanges strongly influence the network though the methods

also assigned parameter weight to other exchanges. Table 2 shows that TriSNAR achieved

the better BIC in this period in all but three quarters, showing that the detected influential

exchanges from TriSNAR outperform the structure identified by the other three methods.

The presence and persistence of existence of influential exchanges relates to market
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Table 1: Summary statistics of the prices on the exchanges, trading volume of the exchanges,
and the absolute number and percentage of leading exchanges (minimum of 25% parameters
different from 0) discovered via the network models. Spread refers to the difference between
min/max in a quarter divided by average price in that quarter.

Exchanges Leading Exchanges
Price Trading Volume TriSNAR TLASSO SCAD LASSO

Spread Var Average Abs % Abs % Abs % Abs %

2
0
1
5

Q1 0.0077 0.0112 272825 2 100 2 100 2 100 2 100
Q2 0.0055 0.0018 190238 3 50 5 83 4 67 6 100
Q3 0.0158 0.0031 143881 1 20 3 60 2 40 4 80
Q4 0.0165 0.0076 512852 2 33 6 100 6 100 2 33

2
0
1
6

Q1 0.0142 0.0022 245754 3 33 5 56 1 11 1 11
Q2 0.0212 0.0041 395426 2 25 5 62 2 25 2 25
Q3 0.0222 0.0023 137468 1 10 3 30 1 10 2 20
Q4 0.0189 0.0014 204339 1 9 5 45 1 9 1 9

2
0
1
7

Q1 0.0163 0.0081 614978 1 11 3 33 3 33 3 33
Q2 0.0407 0.0109 1772345 1 12 3 38 1 12 5 62
Q3 0.0476 0.0122 3907513 6 75 6 75 2 25 5 62
Q4 0.0595 0.0203 8419816 1 7 0 0 3 21 2 14

2
0
1
8

Q1 0.0529 0.0234 13319677 0 0 0 0 10 83 0 0
Q2 0.0514 0.3461 6663316 0 0 10 77 2 15 5 38
Q3 0.0035 0.0296 6386750 0 0 0 0 0 0 0 0
Q4 0.0362 0.0079 5365156 1 5 0 0 2 10 1 5

2
0
1
9

Q1 0.025 0.0021 7629719 0 0 8 50 0 0 0 0
Q2 0.0104 0.0093 19062786 1 5 0 0 1 5 4 18
Q3 0.0026 0.0081 14143778 3 10 30 100 30 100 30 100
Q4 0.0133 0.0089 14984220 0 0 0 0 0 0 0 0

2
0
2
0

Q1 0.0036 0.0164 38316114 0 0 1 4 0 0 0 0
Q2 0.0098 0.0049 28236537 0 0 0 0 0 0 0 0
Q3 0.0014 0.0023 14567112 0 0 0 0 0 0 0 0
Q4 0.0022 0.0044 27947155 2 9 0 0 2 9 2 9
Q1 0.076 0.0132 79204079 0 0 0 0 0 0 0 0
subset 2017 0.0252 0.0171 4697451 1 9 0 0 2 18 0 0
subset 2021 0.0019 0.006 35701839 0 0 0 0 0 0 0 0

inefficiency. In particular that Kraken impacted the price discovery network for an entire

year is a structural inefficiency which means that the price on that exchange was leading the

network. It also raises the question why this particular exchange was influential. During

this period Kraken was considered as a more trustworthy exchange than others in a market

in which scamming of users is common. Also Kraken is located in the USA, whereas back

then many other large BTC exchanges were listed in less regulated jurisdictions. These

reasons could explain why this particular exchange was influential and the source of the

market inefficiency.

We also observe that in this period the spread of prices between the exchanges increased,

which means arbitrage opportunities were present. It is remarkable that the increase in

spread was accompanied by a strong increase in trading volume as well. Leading exchanges

were present in 2015 already, when the price spread was still relatively low. The price spread

widened in 2016 & 2017, when Kraken was frequently the only influential exchange. However

a wide price spread was also present in Q1 & Q2 of 2018, when no influential exchanges

were detected. For the period Q3 2018 to Q1 2021, the price spread was comparably narrow

and hardly ever influential exchanges were detected. Also, in that period mostly TLASSO
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Table 2: BIC and percentage of number of parameters in model of the models TriSNAR
(1), TLASSO (2), SCAD (3) and LASSO (4) in the respective quarters and subsets.

BIC percent numb para
1 2 3 4 1 2 3 4

2
0
1
5

Q1 -1892 -1888 -1880 -1870 58 67 83 100
Q2 -10804 -10785 -10605 -10487 19 29 26 44
Q3 -2645 -2609 -2605 -2547 12 19 23 36
Q4 -5804 -5653 -5637 -5557 11 24 31 7

2
0
1
6

Q1 -7867 -7618 -7633 -7468 12 14 4 3
Q2 -9633 -9757 -9469 -9442 19 27 11 20
Q3 -6397 -6245 -6366 -6156 6 14 11 17
Q4 -6196 -6029 -6087 -5914 13 16 16 9

2
0
1
7

Q1 -10753 -10698 -10477 -10525 7 15 15 16
Q2 -12588 -12834 -12567 -12611 6 16 7 20
Q3 -12291 -12274 -12251 -12152 39 31 7 17
Q4 -22189 -22226 -21627 -21985 2 2 7 6

2
0
1
8

Q1 -30813 -30990 -30434 -30806 0 0 19 0
Q2 -52627 -53861 -51580 -52635 2 35 11 15
Q3 -47645 -47752 -47380 -47645 0 0 0 0
Q4 -58780 -59367 -58497 -58482 3 1 3 2

2
0
1
9

Q1 -36878 -37253 -36872 -36846 1 15 1 1
Q2 -101446 -102351 -98002 -101073 2 1 3 5
Q3 -530418 -517773 -513307 -513307 3 100 100 100
Q4 -77103 -77795 -76886 -77062 0 0 1 0

2
0
2
0

Q1 -64891 -64536 -63017 -64752 0 2 2 1
Q2 -173651 -174538 -173422 -173594 0 0 1 1
Q3 -96906 -97756 -96150 -96681 1 1 2 2
Q4 -89468 -90523 -88688 -89108 2 0 4 4
Q1 -76055 -76821 -76031 -76050 0 1 0 0
subset 2017 -9579 -9489 -9414 -9435 6 1 3 2
subset 2021 -160254 -160217 -160338 -159994 0 3 1 2

was found to provide the best models, see Table 2, which underscores the observation that

the network structure vanished after 2017. As a result, it appears that influential exchanges

are detected before arbitrage opportunities open up and vice versa no longer influential

exchanges are detected before arbitrage opportunities vanish.

4.4 End 2017 - 2018: Market turbulences and fraud

In the end of 2017, the CC market rose to new heights and the price of BTC experienced

strong swings. Table 1 also shows that in Q4 2017 the spread between the exchanges

was high but TriSNAR only identified one leading exchange and the other three methods

also chose notably little exchanges. Comparing with Table 2, we observe that TriSNAR

and TLASSO, which both choose little parameters as non-zero, have the better BIC and

TLASSO, which does not identify any influential exchanges, even outperforms in terms

of BIC. This gives reason to believe that a change in the market structure took place in

that time period. The BIC’s of TriSNAR and TLASSO are quite close to each other and

this period was subject to market turbulences with known cases of market manipulation

which motivates to undergo a deeper investigation of this time period. Due to this market

situation being of special interest, we ran a separate analysis only featuring the crisis period
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Figure 5: Chord diagrams of the first lags of TriSNAR in Q2 2016 until Q1 2017 for the
Bitcoin exchanges.

(a) TriSNAR lags 1 Q2 2016 (b) TriSNAR lags 1 Q3 2016

(c) TriSNAR lags 1 Q4 2016 (d) TriSNAR lags 1 Q1 2017
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for the market evaluation. For that analysis, TriSNAR only identified one exchange as

important whereas LASSO and TLASSO chose none, however SCAD choose two exchanges

as relevant, compare Table 1. All methods only identify parameters in lag 1, hence we

provide the chord diagrams for all methods first lags in Figure 6. TriSNAR only identified

the exchange Bitfinex to be a leading exchange in this period whereas TLASSO, LASSO

and SCAD are more dispersed however they also place high relevance on that particular

exchange, since its parameters have a high magnitude. Comparing the BIC, see Table 2,

TriSNAR achieved a much better BIC despite identifying much more parameters than the

other three methods. This drives the question, why TriSNAR singled out Bitfinex as leading

in this period. Griffin and Shams (2020) discovered fraudulent trading behaviour on the

Bitfinex exchange via the BTC/USDT exchange pair. As TriSNAR suggests, this effect

went further than fraudulent behaviour, the price series was manipulated so that it was

leading the price discovery between all the exchanges.

With the start of 2018, we observe two quarters of high spread between the prices on

the exchanges, however TriSNAR does not identify any influential exchanges for the price

discovery. According to the BIC as reported in Table 2, no longer TriSNAR but TLASSO

provides the best models for the entirety of 2018. TLASSO found no structure for Q1 2018,

this means all parameters were zero. For Q2 2018, an unclear structure with parameters

non-zero in all three lags was identified. This suggest that no clear structure was present

in the network and no exchange acted as influencer in the price discovery network for these

two quarters. In Q3 2018, the price spread between the exchanges becomes negligible and

accordingly only autoregressive effects contribute to the price discovery, hence no cross-

dependence between exchanges was found. In Q4 of 2018, TriSNAR identifies again only

one exchange as relevant for the price discovery. TriSNAR identified only the exchange

BitZ as influential, which is agreed upon by TLASSO, LASSO and SCAD as well, which

place high magnitude on that exchanges parameters, see Figure 7. It is striking that the

identified structure corresponds to the one in Q4 2017, when price manipulation took place

on Bitfinex. To the best of our knowledge, there exists no research into the trading activities

on this exchange in that particular time period. This puts at question if price manipulation

might have taken place on BitZ as well. The CC comparison website CoinGecko publishes

a trust score for exchanges and gives BitZ a 4 out of 10, which indicates that they consider

the exchange as being of little trustworthiness. Following from this analysis, this might

indicate a different case of market manipulation was found.

A related structure was also found in Q3 2015 for the exchange LakeBTC. Again TriS-

NAR identified only this exchange as influential and the other three methods place high

magnitude on that exchange. However in that period LakeBTC was one the largest ex-

changes and influential in many periods, which might explain the influential role as well.

Further the dominating influence of Kraken in 2016/2017 relates to a similar structure as
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Figure 6: Chord diagrams of the first lags of TriSNAR, TLASSO, LASSO and SCAD in
the 2017 subset for the Bitcoin exchanges. All methods only identified parameters in lag 1.

(a) TriSNAR lags 1 (b) TLASSO lags 1

(c) LASSO lags 1 (d) SCAD lags 1
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discovered for Bitfinex during the 2017 market frenzy. However, the dominance of Kraken

existed for an entire year which renders market manipulation unlikely and rather suggests

a structural dominance.

4.5 2019 - 2021: Improving price discovery network efficiency

From 2019 onwards, we observe a low spread between the pricing series on the exchanges,

compare Table 1, and TriSNAR usually finds none or only a few exchanges to be influential

and the other methods support this observation. Taking into account Table 2, we observe

that mostly TLASSO estimates the model with the best BIC. This suggests that the pre-

viously observed influencer structure vanished, since otherwise TriSNAR would receive the

better BIC and identify leading exchanges. Provided that the spread between the pricing

series is not too large and TLASSO usually provides the best model, this indicates that the

pricing network has no leading exchanges in this time period which suggests a lower risk to

the network because the market is more efficient compared to before. In Q3 2019 and Q1

2020, TLASSO gets outperformed by TriSNAR. In both quarters a low spread between the

exchanges can be observed. However TriSNAR does not identify a clear structure either,

which underscores the observation that the previously influential exchanges are no longer

influential, which leads to an improved market efficiency.

4.6 2021 market frenzy: Continuing price discovery network efficiency

Even in Q1 of 2021 the connectivity between the exchanges remained similar as in 2019

and 2020, hence no influential exchanges were detected and again TLASSO performed best

by BIC, compare Table 2. This is a surprising result considering that the spread between

the exchanges is large in that quarter, Table 1, however it appears that the pricing network

between the exchanges remained efficient. It is also remarkable that the pricing network

stayed efficient considering Q1 of 2021 covers the time period of another market frenzy of

Bitcoin in which the price reached various all-time-highs within a few weeks. Though it

appears that the market situation was very different in this time period than it was during

the market turbulences of 2017. Due to the special market situation in this time period,

we also performed an analysis focusing on the time period of the market turbulences. The

results indicate also in this subset analysis, that the market remained efficient, since no

influential exchanges were detected and SCAD achieved the best BIC, compare Table 1 and

2. This result is in line with the ones from the quarter-by-quarter analysis.
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Figure 7: Chord diagrams of the first lags of TriSNAR, TLASSO, LASSO and SCAD in
the Q4 2018 for the Bitcoin exchanges. All methods only identified parameters in lag 1.

(a) TriSNAR lags 1 (b) TLASSO lags 1

(c) LASSO lags 1 (d) SCAD lags 1
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5 Synthetic data experiments

We investigate the finite-sample performance of the proposed TriSNAR estimator with syn-

thetic data. We consider various scenarios, ranging from simple cases with only one active

lag to relatively complex cases with mixed lag, group and individual sparsity. We evaluate

the ability to detect sparsity, the accuracy of the parameter estimation and prediction, as

well as the runtime. We compare TriSNAR, derived with the active-set (TriSNARG) and ap-

proximating algorithm (TriSNARA), see Appendix I for the details of the algorithms, with a

number of competing models. Two of the models, namely, LASSO and SCAD, only penalize

for the individual parameters, while one other model, ‘tapered LASSO’ (TLASSO), Nichol-

son et al. (2014), penalizes for the lag structure by tapering off the effect of the individual

parameter penalization. Consequently, it regularizes the lags and individual parameters.

The estimation is implemented in the BigVAR package, Nicholson et al. (2019).

In the TriSNARA optimization, we fix the identified lags, groups and parameters and

activate FISTA after m1 = 5 iterations, which provided frequently similar results in the

synthetic data study. This value may not be sufficient for a different experiment or a different

dataset. For dimension d = 100, we only derive the results for the approximating algorithm

due to a slow optimization speed in high dimensions. We compare the computational time

in the synthetic data study and also provide a detailed comparison in Appendix I.1. The

code used in this paper as well as files containing the exact settings required for a replication

of the synthetic data study are available at GitHub.

5.1 Set up

We consider networks with d ∈ {10, 20, 50, 100} time series and lengths of T ∈ {100, 200, 500, 1, 000}
data points. As we fix the active parameter matrices up to p = 3 lags, we need to derive

300, 1200, 7500 and 30000 unknown parameters of the adjacency matrices Ak, k = 1, · · · , 3.
We design 6 model specifications and refer to each scenario by an abbreviation. We assign

the capital letter D for specifications with a diagonal parameter matrix and the capital

letter M for a medium persistent case containing group- and individual sparsity. A digit

postfixed to the abbreviation indicates the number of active lag(s) in the specification. For

example, a NAR model with the first and third lag being active with medium persistence

is referred to as M1/M3. The details are listed below.

• D1 : The first lag is a diagonal matrix with all diagonal parameters being 0.5. The

other two lags are zero. In other words, there only exists autocorrelation in the

network.

• D2 : Similar specification as D1, except the active parameters appear in lag 2. The
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first and third lags are non-active.

• M1 : The first lag is active, with all diagonal parameters being of magnitude 0.5.

There are 4 active columns (1, 3, 7, 10) with alternating values of 0 and 0.15. The

companion matrix of this specification has the largest eigenvalue of 0.75, yielding a

medium persistence. The simultaneous evaluation of the lag, group and individual

effects are required.

• M2 : Similar to specification M1, except the active parameters occur in lag 2.

• M1/M3 : Two lags are active, namely, the first and third lags. Both have the diagonal

parameters of 0.2. The columns 1, 3, 7, 10 are active with alternating values 0 and

0.1. The companion matrix of the specification has the largest eigenvalue of 0.87,

indicating a medium persistence.

• NS1 : We also consider a non-sparse specification, where only the first lag is active,

yet there is no group and individual sparsity in the active matrix. The magnitude

of the parameter decays exponentially away from the diagonal. It starts at 0.4 on

the diagonal, and the off-diagonal parameters take on the values resulting from the

formula Ai,j = (−1)|i−j|0.4|i−j|+1. In other words, all parameters are active; however,

those far from the diagonal become quite small.

For specifications featuring only individual effects, e.g., NS1, the classic regularizations

LASSO and SCAD are expected to perform well since both models are designed for such

settings. When group effects are added, e.g., M1 and M2, TriSNAR is expected to excel

since its three-layer design is appropriate, whereas the other models do not consider group

effects. In the complex case of, e.g., M1/M3 with lag, group and individual effects present,

TriSNAR and TLASSO should behave well as both regularize the lag and individual effects,

though TriSNAR has the advantage of also considering the group effects.

In the data generation, the innovations are assumed to be i.i.d. Gaussian with ϵ ∼
N(0, Id). In all, there are 4(d) × 4(T ) × 6(specifications) = 96 experiments. For each

experiment, we generated 100 synthetic datasets and computed the average performance.

Moreover, we split each dataset into a training, validation and testing dataset, each with

length T . We estimated the models for all combinations of λ1, λ2, and λ3-sequences on the

training dataset. The λ1, λ2, λ3-sequences are generated from deriving the values first for

which all parameters are set to 0. From this value a halving sequence is created for each

λ until 0 is reached. The best performing model was evaluated based on the validation

dataset with BIC. The resulting model was then implemented for the test sample for its

forecasting accuracy.
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5.2 Evaluation Criteria

The performance was evaluated in three aspects: pattern, accuracy and speed.

• To evaluate the pattern identification, we computed the False Negative (FN) and

False Positive (FP) rates on the estimated sets. FN refers to active set’s being falsely

identified as null, namely, under-detection or overly sparse. FP refers to the set’s being

wrongly identified as active, namely, overdetection or overly dense. It is natural that

the lower these two measures are, the better the performance. Given the three-layer

sparsity, there are then 6 metrics: FN.l and FP.l for lags, FN.g and FP.g for groups,

and FN.e and FP.e for individual elements. In the case of perfect detection, namely,

all 6 metrics are zero, we conclude that the true pattern was identified.

• Accuracy is measured using the Mean Absolute Error (MAE). Again, there are three

different metrics. MAE.para refers to the estimation accuracy, computed based on

the difference between the true and estimated parameters. MAE.res refers to the

prediction accuracy, which is calculated based on the residuals between the true values

of the time series and the predicted values based on the model. In other words, it

evaluates in-sample on the training dataset. MAFE.res refers to the forecast error,

an out-of-sample measure based on the testing dataset. In all the accuracy metrics, a

low value indicates good accuracy.

• Time/combination is an indicator to measure the speed. We report the time in seconds

it took on average to derive the model per combination of penalization sequences.

5.3 Roseplots: Summary of the Results

The Figures 8 and 9 summarize the performance of TriSNAR and competing estimators

along with the 10 measurements in the 96 experiments, separated according to model spec-

ification. We provide the detailed results in Tables in Appendix IV. Each of the 4 roseplots

shows the performance of the synthetic data study for a given dimension for all 6 scenarios,

all number of observations and the 10 evaluation criteria. Each roseplot is separated into 6

sections, one for each scenario. Within each section, 4 subsections are assigned for the num-

ber of observations: T = {100, 200, 500, 1000}. For each of these subsections, 5 columns of

rectangles are provided, named A, B, C, D, E. The naming convention refers to TriSNARG

(A), TriSNARA (B), TLASSO (C), SCAD (D) and LASSO (E).

The entire circle has 10 tracks, each of which represents another evaluation criterion.

The most outer track is referred to as 1, and the most inner track is referred to as 10. The

6 most outer tracks are for the False Negative and False Positive criteria: FN.l (1), FP.l

(2), FN.g (3), FP.g (4), FN.e (5), FP.e (6). The FN and FP rates vary between 0 and 1,
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Figure 8: Roseplot for d = 10 (left) and d = 20 (right)

whereas the color palette goes from white (0) to red (1). No False Negatives and no False

Positives are the best possible outcomes; hence, the more white or shallow red the rectangles

are, the better. Track 7 reports the MAE.para with a color palette from white (0) to blue

(maximum value of MAE.para for the dimension d under evaluation). Again, the lower the

value, the better; hence, white or shallow blue rectangles are preferable. The MAE.res is

reported via track 8 and the MAFE.res via track 9. The color palette goes from white (0)

to green (maximum value of MAE.res/MAFE.res for the dimension d under evaluation).

Since these evaluation criteria reflect the error terms, the smaller the values are, the better.

Thus, white and shallow green is preferable. The most inner track, 10, reports the runtime

per combination of λ values. The color palette ranges from white (0) to black (maximum

value of runtime per comparison for the dimension d under evaluation). Certainly, a faster

runtime of the code is preferred; hence, white and gray rectangles are better.

It can be observed that the rectangles associated with TriSNARG and TriSNARA with

d = {10, 20, 50} for the FN and FP values are always white for D1 and D2. For d = 100,

the rectangles become all white for T ≥ 200. However, all the other models show mostly

dark red rectangles on tracks 2, 4, and 6, which reflect the FP rates. Hence, the competing

estimators overparametrize the models; therefore, they do not provide the true model. For

D1 and a higher number of observations, SCAD also returned the true model, although only

TriSNAR identified the true structure in both cases and for a small number of observations.

For scenarios M1 and M2, overall, TriSNARG and TriSNARA performed best in terms of

uncovering the true structure. For T = 100, both models provided a too sparse model,

while the competing estimators selected mostly the incorrect parameters and the incorrect

structure. We observe that all rectangles of C, D, and E are shaded red, which indicates

that incorrect parameters were chosen, whereas the true parameters were not included in
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Figure 9: Roseplot for d = 50 (left) and d = 100 (right)

the model. Hence, the TriSNAR solution is preferable even though the solution was too

sparse. For T ≥ 200, TriSNARG and TriSNARA became continuously better, whereas

estimators C, D, and E overparameterized. For M1/M3 and NS1 scenarios, exploring the

underlying structure became more difficult for all involved estimators. It can be observed

that the TriSNAR estimators gave a more accurate estimate, which was inferred from the

observation that the respective rectangles are white or have more shallow red compared

to the competing estimators. TriSNARG and TriSNARA also overparameterized, however,

less intense than the competing estimators.

Considering the MAE.para, track 7, it can be observed that both TriSNAR estimators

provided more accurate parameter estimations in most cases. When they did not outper-

form, the performance was similar to the other models. This result corresponds with the

observation that TriSNARG and TriSNARA provided more accurate solutions in terms of

identifying the underlying model structure.

Tracks 8 and 9 provided the results for MAE.res and MAFE.res. For all models

within one subsection, the results for MAE.res were comparable however for MAFE.res

the TriSNARG and TriSNARA models usually outperform. Hence their prediction accuracy

is better. This infers that all models provide similar model performance in-sample, though

the out-of-sample (prediction) performance of TriSNARG and TriSNARA is much better

than for the competing methods. Further, as was discussed before, models C, D, and E

tend to overparameterize the models. In contrast, TriSNARG and TriSNARA can identify

the true model structure more often while providing better prediction accuracy.

Track 10 compares the runtime per combination of λ sequences. We observe that the

TriSNAR estimators had the fastest runtime, whereas the TLASSO model (C) frequently
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had a much longer runtime than the other estimators. SCAD and LASSO performed com-

parably in terms of runtime, and they were derived faster than TLASSO.

The good performance of TriSNAR in the synthetic data study for various amounts

of finite data calls for an investigation of the asymptotic properties of TriSNAR. Under

the assumption of a fixed dimensionality, we study the asymptotic properties of TriSNAR

in Appendix II. We show that TriSNAR has the sparsity and oracle property under the

outlined assumptions.

The good performance of TriSNAR over all evaluation metrics was possible due to its

properties. Due to its structure TriSNAR is able to detect influencer structures faster than

competing methods, whereas it remains flexible when such structures do not exist. Also

its ability to regularize the temporal structure contributes to its better performance. In

summary, TriSNAR outperformed in the majority of the scenarios and cases, illustrating

its applicability to large-scale networks.

6 Conclusion

We study the price discovery network between Bitcoin exchanges with a focus upon identi-

fication of influential exchanges, market efficiency and market manipulation identification.

We identified various influential exchanges before 2018, strikingly the exchange Kraken re-

mained influential for an entire year, namely from April 2016 until March 2017. We relate

this observation to its popularity back then and that Kraken is headquartered in the USA

whereas many other exchanges were back then based in less regulated jurisdictions. We

found that the efficiency of the BTC price discovery network decreased from 2015 until the

2017 market frenzy, however it improved from 2018 onwards. This observations stems from

the existence of influential exchanges during the period 2015-2017 and evidence of structural

inefficiency relating to the detection of Kraken as an influential exchange for an entire year.

However the situation improved from 2018 onwards, which relates to the detection of less,

up to none, influential exchanges. Even during the market frenzy of 2021, no influential

exchanges were detected hence the improved market efficiency prevailed. This also provides

evidence that the market frenzies of 2017 and 2021 were structurally different from each

other. In terms of fraud detection, we identified a single influential exchange during the

market frenzy of 2017, namely Bitfinex, which was found to be the platform for market

manipulation during that time. We identified similar patterns a few more times, notably

for the exchange BitZ one year later, which calls at question if it might have been used

for fraudulent behaviour as well. Other cases involved Kraken and LakeBTC in the time

period 2015-2017, however due to their popularity in this time period, the observation is

more likely related to actual influence on the price discovery network rather market ma-
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nipulation. For the study we propose a model, called TriSNAR, to identify the influential

exchanges in the network. We study the asymptotic properties of TriSNAR and show in

extensive synthetic data studies that it outperforms competing models in a finite sample

setting. Compared to the other methods, TriSNAR excels in terms of accuracy, runtime

and its ability to discover the influencers in a network structure. This study improves the

understanding of the price discovery in the Bitcoin market and proposes a model, TriSNAR,

to study such multi-market networks which outperformed competing methods.
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de Paula, Á. (2017). “Econometrics of Network Models”. Advances in Economics and Econo-

metrics: Eleventh World Congress. Ed. by B. Honoré, A. Pakes, M. Piazzesi, and L.
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I Algorithm - Appendix

We develop two algorithms to implement the estimation: an active-set algorithm based

on coordinate-wise descent and an approximating algorithm with early termination for fast

solutions. The latter switches from the active-set approach after a given number of iterations

and continues searching for a solution with the FISTA algorithm, Beck and Teboulle (2009),

solely for the active parameters already discovered.

In the following, we describe the algorithms in more detail. The vector Yt without the

jth process is denoted by Yt,−j , and recall that Yt,j represents the jth process. Define

sort(·) as the operator that sorts the variables in decreasing order. We use an active-set

algorithm to sequentially evaluate the three-layer parameters with the order of lags, groups

and individuals. The algorithm is initialized with completely sparse parameter matrices,

meaning that all parameters are set equal to 0. Since we assume that the parameter matrix

is sparse, this can be considered an appropriate starting point. First, we sort the lags,

groups and individual parameters according to the proportion of variance unexplained by

them. The sorting ensures that, the algorithm optimizes first the parameters that explain

more of the variability of the system. In the algorithm, we iterate over active lags in an

outer optimization loop. We iterate over the active groups in each of the identified active

lags in a similar manner. The active individual elements are identified and optimized only

from the active group sets. In each iteration, we construct the residuals ϵk, ϵk;−j and ϵk;ij ,

reflecting the unexplained variance, based on which we optimize the parameters for the

active sets. While iterating, non-active lags, groups and individual parameters are removed

from further analysis.

The implementations are formulated as Algorithm TriSNAR.lag, Algorithm TriS-

NAR.group and Algorithm TriSNAR.individual.

1. TriSNAR.lag is the first outer loop algorithm. It evaluates the tuning parameter λ1 to

identify the lag parameter matrix carrying sufficient information. We sort the matrices

in decreasing order according to the explained variance as reflected in the residuals

ϵk. In each iteration step (m1), Ak with little or no explanatory power is forced

to be 0. Otherwise, with a sufficiently large explained contribution to the variance,

i.e., ϵk > d2λ1, we continue to estimate the lag parameter matrix with Algorithm

TriSNAR.group.

2. TriSNAR.group evaluates the groups on the sequence λ2. Similarly, we order them

according to the explained variance, and the algorithm is iterated with the residual

ϵk;−j . In each iteration step (m2), Ak;j is set to 0 in the case of little or no explanatory

power. Otherwise, if ϵk;−j > dλ2, we continue the implementation with Algorithm

TriSNAR.individual.
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3. TriSNAR.individual is used to optimize the individual parameters inside an active

group. It is a coordinate-wise descent optimization under the sequence λ3 and with

residual ϵk;ij according to estimator (5). In each iteration step (m3), the contribution

to the variance is evaluated. In case there is little or no explanatory power, Ak;ij is set

to 0. Otherwise, the non-zero parameter is estimated following the case differentiation

of the estimator (5).

4. The algorithms are repeated with iteration steps m1, m2, m3 until all parameter

matrices have converged.

The implementation depends on the hyperparameters η1, η2, η3, which are user specified.

The parameter b for the estimator of the individual parameters can also be set as a sequence.

However, this part of the estimator corresponds to SCAD; hence, we follow the recommen-

dation of Fan and Li (2001) and set b = 3.7. The regularization sequences remain to be

selected, i.e., the values of the tuning parameters λ1, λ2, and λ3. Usually, cross-validation is

used to determine the sequence. However, due to the time dependence in our model, cross-

validation is not very suitable. We choose the tuning parameters using the out-of-sample

BIC. The use of information criteria for the evaluation is consistent with Bańbura et al.

(2010), Song and Bickel (2011), Nicholson et al. (2017) and Chen et al. (2018). The run time

depends on the size of the sequence of tuning parameters λ1, λ2 and λ3. Naturally, a more

granular penalization sequence leads to a longer runtime of the optimization procedure. In

our case, it is a halving sequence approaching 0 for the individual parameter penalization

(λ3) and a diminishing sequence by 1/5 for the group (λ2) and lag regularization (λ1), also

approaching 0. This default setting provides stable performance in the synthetic data study.

For very high dimensions or difficult specifications, we also propose an approximating

algorithm that can find a faster solution but may lead to a local optimizer. In the approxi-

mating algorithm, the described procedure interrupts after a specified number of iterations

(s). At this point, the by then identified lagged matrices and groups are considered ac-

tive, and the remaining ones are set to 0. Then, we apply the FISTA algorithm to the

parameters that are considered active. FISTA is not applied in the active-set algorithm

because the convergence takes longer over the active sets. Coordinate-wise descent, deliv-

ering similar parameter estimates, is beneficial because an easier parameter-updating step

improves the speed due to iterating over the sets of parameters. However, FISTA performs

well for the approximating algorithm because it can optimize faster over all sets at once

instead of iterating over them, which improves the estimation time of the parameters. In

the numerical analysis, the results derived with the active-set optimization algorithm are

denoted by TriSNARG and the approximate result by TriSNARA.
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Algorithm 1 : TriSNAR.lag

Input: Data Yt for all t = 1, . . . , T
Output: Adjacency matrix A
1: Initialization A = 0, m1 = 1
2: for k = 1, . . . , p do

3: ϵ.lagk =
√∑T

t=p+1(Y
⊤
t−k(Yt −

∑p
l=1\k AlYt−l))2

4: end for
5: order.lag = sort({ϵ.lagk}pk=1)
6:

7: A(m1) = A; A(m1−1) = A+ 1
8: while vec{A(m1) −A(m1−1)} < η1 and m1 ≤ s do
9: for k ∈ order.lag do

10: m2 = 1

11: ϵk =
√∑T

t=p+1(Y
⊤
t−k(Yt −

∑p
l=1\k A

(m2)
l Yt−l))2

12: if ϵk ≤ d2λ1 then A
(m2)
k = 0

13: else
14: A

(m2)
k = Ak; A

(m2−1) = Ak + 1

15: while A
(m2)
k −A

(m2−1)
k < η2 do

16: TriSNAR.group({Yt}Tt=1, A
(m2)
k )

17: m2 = m2 + 1
18: end while
19: end if
20: m1 = m1 + 1
21: end for
22: end while
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Algorithm 2 : TriSNAR.group

Input: Data Yt for all t = 1, . . . , T ; Ak

Output: Adjacency matrix Ak

1: for j = 1, . . . , d do

2: ϵ.groupj =
√∑T

t=p+1(Y
⊤
t−k,−j(Yt −

∑p
l=1\k AlYt−l)−j)2

3: end for
4: order.group = sort({ϵ.groupj}dj=1)
5:

6: for j ∈ order.group do
7: m3 = 1

8: ϵk;−j =
√∑T

t=p+1(Y
⊤
t−k,−j(Yt −

∑p
l=1\k A

(m3)
l Yt−l)−j)2

9: if ϵk;−j ≤ dλ2 then A
(m3)
k;j = 0

10: else
11: A

(m3)
k;j = Ak;j ; A

(m3−1)
k;j = Ak;j + 1

12: while A
(m3)
k;j −A

(m3−1)
k;j < η3 do

13: TriSNAR.individual({Yt}Tt=1, A
(m3)
k;j )

14: m3 = m3 + 1
15: end while
16: end if
17: end for

Algorithm 3 : TriSNAR.individual

Input: Data Yt for all t = 1, . . . , T ; Ak;j

Output: Adjacency matrix Ak;j

1: for i = 1, . . . , d do

2: ϵk;ij =
√∑T

t=p+1(Y
⊤
t−k,j(Yt,i −

∑p
l=1\k A

(m3)
l,ij Yt−l,j))2

3: if |ϵk;ij |≤ 2λ3 then z = sgn(ϵk;ij)(|ϵk;ij |−λ3)+

4: else if 2λ3 < |ϵk;ij |≤ bλ3 then z =
(b−1)ϵk;ij−sgn(ϵk;ij)bλ3

(b−2)

5: else if bλ3 < |ϵk;ij | then z = ϵk;ij
6: end if
7: Ak;ij = z/

∑T
t=p+1(Y

⊤
t−k,jYt−k,j)

8: end for

37



I.1 Comparison of derivation time

The results shown in Table 3 are deducted from the synthetic data study in section 5. The

table shows the time the estimation took for each sample size T ∈ {100, 200, 500, 1000} for

TriSNARG. The results are compared with the synthetic datasets with d = 10 time series

for 3, 5 and 7 lags in the algorithmic specifications. The computational time increases when

more lags are involved; however, with a higher number of observations, the computation

time mostly decreases. This is particularly true for 5 and 7 lags. One observes that the

computational time for those models only involving the diagonal, D1 and D2, is comparable

to models involving network effects of medium persistence, M1, M2, M1/M3. Interestingly,

the estimation time of the models is lower when the third lag is also active, meaning M1.

M3, than for its peers with only the first or second lag active (M1, M2 ). Compared with the

computational time with the competing models in the synthetic data study, it can be ob-

served that TriSNARG/A has a considerably lower computational time for each combination

of λ’s than the competing models; see, e.g., Table 10. The granularity of the λ sequences

defines the performance. The lesser combinations, namely, a less granular grid of λ, reduce

the overall runtime of the models and are therefore crucial for applying any of the reported

methods.

Table 3: Average duration of derivation in seconds for synthetic data experiments with 100,
200, 500, 1000 observations and for 3, 5, 7 lags for the specifications D1, D2, M1, M1/M3,
M2, NS1. For the sake of brevity only the experiments for 10 time series are shown, however
the results for larger systems give comparable results.

100 200 500 1000

3 5 7 3 5 7 3 5 7 3 5 7

D1 68 317 623 52 145 335 73 142 267 122 391 387

D2 67 255 722 50 121 252 69 159 314 107 211 364

M1 98 275 737 87 209 420 107 219 441 160 307 520

M1/M3 69 240 682 44 113 253 89 165 283 147 282 482

M2 88 275 749 72 172 351 102 224 397 143 300 527

NS1 99 284 777 93 239 506 121 240 410 176 347 627

II Theoretical Properties - Appendix

We derive the asymptotic properties of the estimator (5). Recall that the matrices Ak are

assumed to have a sparse ‘network’ structure. The residual term ϵt = (ϵ1,t, · · · , ϵd,t)⊤ is

a vector that is assumed to be independently and identically distributed with ϵt ∼ (0,Σ).

We assume that the model is stationary and ergodic, with all roots of the polynomial

Id −
∑p

k=1AkZ
k lying outside the unit ball. Note that d is fixed during the investigation

of the asymptotic properties. We assume the following regularity conditions hold:
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1. The observations Yt for all t are i.i.d. with probability density f(Y,A). It shall hold

E

[
∂logf(Y,A)

∂Ak;ij

]
= 0 for all i, j = 1, . . . , d and k = 1, . . . , p

and

Ik1i1j1,k2i2j2 = E− ∂2logf(Y,A)

∂Ak1;i1j1∂Ak2;i2j2

2. The Fisher Information matrix I(A) is finite and positive definite at A = A with A
the true parameter matrix.

3. There exists an open subset ω in the parameter space Ω of A that contains the true

parameter matrix A. For almost all Yt the density f(Y,A) admits all third derivatives
∂3logf(Y,A)

∂Ai1j1
∂Ai2j2

∂Ai3j3
for all A in the open subset. There exist functions Mi1j1,i2j2,i3j3 such

that ∣∣∣∣ ∂3logf(Y,A)

∂Ai1j1∂Ai2j2∂Ai3j3

∣∣∣∣ ≤ Mi1j1,i2j2,i3j3(Y ) for all A ∈ ω

whereas mi1j1,i2j2,i3j3 = E [Mi1j1,i2j2,i3j3(Y )] < ∞.

Note that T will go to infinity which impacts the values of λ1, λ2, λ3, hence we denote

them λ1,T , λ2,T , λ3,T from here onwards. Denote gmax,T = max(
∂pλ1,T ,λ2,T ,λ3,T

∂Ak;ij
: Ak;ij ̸= 0),

which is the maximal regularization applied to any Ak;ij . gmax,T will only take on the

value 0 if λ1,T , λ2,T , λ3,T → 0. Also in case of a dense system, gmax,T would be 0 but this

contradicts the assumption of this study of sparse parameter matrices. The proofs to the

results are given in detail in Appendix III.

Theorem 1 Assume that the assumptions for model (2) hold. If max{
∂2pλ1,T ,λ2,T ,λ3,T

∂A2
k;ij(Ak;ij)

:

Ak;ij ̸= 0} → 0, then there exists a local maximizer Â for (3) such that ||Â − A0||F=
Op(T

−1/2 + gmax,T ).

When the hypotheses of Theorem 1 are fulfilled, a proper choice of the regularization pa-

rameters λ1, λ2, λ3 ensures the existence of a local maximizer of (3), which converges at

speed
√
T . If λ1,T , λ2,T , λ3,T → 0, then the estimator is root-T consistent.

Next, we show that the estimator possesses the sparsity property and hence is capable

of selecting the model parameters in a sparse system. Denote by CL(·) the constrained

likelihood. In what follows, assume without loss of generality that the true parameter

matrix A contains p lag matrices. Each matrix has a submatrix of dimension d1×d1 whose

elements are different from 0 in the upper left corner. The remaining elements are equal

to 0. Let Ak;d1d1 indicate the respective submatrix for all k and Ak;−d1−d1 the remaining

elements of the respective matrix. We denote by A·;d1d1 the combined parameter matrices
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Ak;d1d1 over all k, and let A·;−d1−d1 denote the respective combined parameter matrices

Ak;−d1−d1 over all k.

Lemma 1 Assume that the assumptions for model (2) hold. If λ1,T , λ2,T , λ3,T → 0 and√
Tλ1,T ,

√
Tλ2,T ,

√
Tλ3,T → ∞ as T → ∞, then with probability tending to 1, for any given

Ak;d1d1 satisfying ||Ak;d1d1 −Ak;d1d1;0||F= Op(T
−1/2) and any constant Q,

CL(Ak;d1d1 , 0) = max
||Ak;−d1−d1

||F≤QT−1/2
CL(Ak;d1d1 ,Ak;−d1−d1),

hence

P (Ak;−d1−d1 = 0) → 1.

Finally, we show that the estimator possesses the oracle property, i.e., it chooses the

true model as if it were a theoretical estimator that knows the true model structure.

We define

F =
[
p
′′
λ1,T ,λ2,T ,λ3,T

(A1;11), · · · , p
′′
λ1,T ,λ2,T ,λ3,T

(Ap;d1d1)
]

as a pd1 × pd1 symmetric matrix containing the second derivatives of the penalty function

and

G =
[
p
′
λ1,T ,λ2,T ,λ3,T

(A1;11)sgn(A1;11), · · · , p
′
λ1,T ,λ2,T ,λ3,T

(Ap;d1d1)sgn(Ap;d1d1)
]

as a d1 × pd1 matrix containing the first derivatives of the penalty function.

Theorem 2 Assume that the assumptions for model (2) hold. If λ1,T , λ2,T , λ3,T → 0 and√
Tλ1,T ,

√
Tλ2,T ,

√
Tλ3,T → ∞ as T → ∞, then with probability tending to 1, the root-T

consistent local maximizer A = [A·;d1d1 , A·;−d1−d1 ] from Theorem 1 must satisfy

1. Sparsity: A·;−d1−d1 = 0

2. Asymptotic normality:

√
T ((A·;d1d1 −A·;d1d1)(I(A·;d1d1) + F ) +G)

d→ N(0, I(A·;d1d1)) (6)

in distribution, where I(A·;d1d1) is the Fisher Information knowing that A·;−d1−d1 = 0.

III Proof - Appendix

In this section we prove the consistency and oracle property of the estimator. We prove

the theorems under the assumptions made for model (2), stated in Appendix II. The proofs
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follow Fan and Li (2001), Song and Bickel (2011) and Wang et al. (2007).

We further define OM (·) as big O notation for elementwise convergence within a matrix

and OV (·) as big O notation for elementwise convergence within a vector. Likewise we

define oM (·) and oV (·) as small o notation for matrices and vectors. Let vec(·) denote

the vectorizing operator to convert a matrix to a vector. Further, we denote the Fisher

information matrix by I(·), which is assumed to be finite and positive definite.

III.1 Proof of Theorem 1

Denote by CL(·) the constrained likelihood and by L(·) the likelihood. Define CL(A) =

L(A) − T
∑p

k=1

∑d
i=1

∑d
j=1 pλ1,T ,λ2,T ,λ3,T

(Ak;ij). Further define gT = T−1/2 + gmax,T and

U coordinates around A. For a large constant Q, it holds that {A + gTU : ||U ||F≤ Q} is

the ball around A and we intend to show that a local maximum with maximizer Â lies in

the ball. So we intend to show that on the surface of the ball, ||U ||F= Q, for any ϵ > 0,

there exists a large constant Q such that

P{ sup
||U ||F=Q

CL(A+ gTU) < CL(A)} ≥ 1− ϵ. (7)

The difference between the two penalized likelihoods CL(A+ gTU) and CL(A) can be

bounded from above by the likelihood and the penalization on Â only for the pd21 parameters

different from 0. For the construction of the upper bound, we make use of the property

pλ1,T ,λ2,T ,λ3,T
(0) = 0, which holds for the p(d − d1)

2 parameters which are 0. In case no

parameter in A is 0, it will be equal, otherwise larger:

CL(A+ gTU)− CL(A) ≤ L(A+ gTU)− L(A) (8)

− T

p∑
k=1

d1∑
i=1

d1∑
j=1

{pλ1,T ,λ2,T ,λ3,T
(Ak;ij + gTUk;ij)− pλ1,T ,λ2,T ,λ3,T

(Ak;ij)}.

Approximating by a Taylor expansion for A+ gTU around A gives

L(A+ gTU) = L(A) + (A+ gTU −A)L
′
(A) (9)

+
1

2
L

′′
(A)(A+ gTU −A)⊤(A+ gTU −A)

+ op{
1

2
L

′′
(A)(A+ gTU −A)⊤(A+ gTU −A)}
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which leads to

L(A+ gTU)− L(A) = gTL
′
(A)vec(U) +

1

2
g2Tvec(U)⊤L

′′
(A)vec(U) (10)

+
1

2
g2Tvec(U)⊤L

′′
(A)vec(U)op{1}

Also,

T

p∑
k=1

d1∑
i,j=1

pλ1,T ,λ2,T ,λ3,T
(Ak;ij + gTUk;ij) = T

p∑
k=1

d1∑
i,j=1

pλ1,T ,λ2,T ,λ3,T
(Ak;ij) (11)

+ T

p∑
k=1

d1∑
i,j=1

(Ak;ij + gTUk;ij −Ak;ij)

pλ1,T ,λ2,T ,λ3,T
(Ak;ij)

′
sgn(Ak;ij)

+ T

p∑
k=1

d1∑
i,j=1

(Ak;ij + gTUk;ij −Ak;ij)
2

pλ1,T ,λ2,T ,λ3,T
(Ak;ij)

′′

+ T

p∑
k=1

d1∑
i,j=1

op(Ak;ij + gTUk;ij −Ak;ij)
2

pλ1,T ,λ2,T ,λ3,T
(Ak;ij)

′′

which leads to

T

p∑
k=1

d1∑
i,j=1

pλ1,T ,λ2,T ,λ3,T
(Ak;ij + gTUk;ij)− T

p∑
k=1

d1∑
i,j=1

pλ1,T ,λ2,T ,λ3,T
(Ak;ij) (12)

= T

p∑
k=1

d1∑
i,j=1

(gTUk;ij)pλ1,T ,λ2,T ,λ3,T
(Ak;ij)

′
sgn(Ak;ij) (13)

+ T

p∑
k=1

d1∑
i,j=1

(gTUk;ij)
2pλ1,T ,λ2,T ,λ3,T

(Ak;ij)
′′

+ T

p∑
k=1

d1∑
i,j=1

g2TU
2
k;ijop(1)

2pλ1,T ,λ2,T ,λ3,T
(Ak;ij)

′′

Recall that L
′′
(A) = −TI(A).
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Hence,

CL(A+ gTU)− CL(A) ≤bL
′
(A)⊤vec(U) (14)

− 1

2
Tg2Tvec(U)⊤I(A)vec(U)(1 + op(1))

− T

p∑
k=1

d1∑
i,j=1

gT pλ1,T ,λ2,T ,λ3,T
(Ak;ij)

′
sgn(Ak;ij)Uk;ij

− T

p∑
k=1

d1∑
i,j=1

(gTUk;ij)
2pλ1,T ,λ2,T ,λ3,T

(Ak;ij)
′′
(1 + op(1))

If the right-hand side of the inequality is smaller 0, the inequality holds. Note that it

holds T−1/2L(A)
′
= OV (1). It follows that the first term on the right-hand side is of order

OV (T
1/2gT ). The second term is of order Op(Tg

2
T ), and it holds Op(T

1/2gT ) = Op(Tg
2
T ).

For a sufficiently large Q, the second term dominates the first term uniformly in ||U ||F= Q.

The third and fourth term are bounded by

TgT

p∑
k=1

d1∑
i,j=1

gmax,TUk;ij + Tg2T

p∑
k=1

d1∑
i,j=1

U2
k;ij max(

∂2pλ1,T ,λ2,T ,λ3,T

∂A2
k;ij

: Ak;ij ̸= 0)(1 + op(1)),

(15)

and therefore are Op(TgT ) and Op(Tg
2
T ). Since max(

∂2pλ1,T ,λ2,T ,λ3,T

∂A2
k;ij

: Ak;ij ̸= 0) → 0 and

the term is of Op(Tg
2
T ), it is dominated by the second term in case of a large Q. Also

the third term is dominated by the second term since it is of order Op(TgT gmax,T ) which

is dominated by Op(Tg
2
T ) and Q takes on a larger effect in the second term. Therefore,

the negativity of the second term ensures the right-hand side to be smaller 0 in case of a

large Q. Hence (7) holds. This implies that there exists a local maximizer Â for which

||Â−A||F= Op(gT ). This completes the proof of the theorem.

III.2 Proof of Lemma 1

We carry out the proof by showing that all parameters in Ak;−d1−d1 for all k cannot be

different from 0 since this would be a contradiction. One has

∂CL(Âk)

∂Ak;ij
=

∂L(Âk)

∂Ak;ij
− Tp

′
λ1,T ,λ2,T ,λ3,T

(Âk;ij)sgn(Âk;ij), (16)

hence for a consistent selection of Ak;−d1−d1 all parameters have to be 0. Otherwise the

first derivative of the constrained likelihood would not equal the unconstrained one, which

is 0.
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It is sufficient to show that ∂CL(Ak)
∂Ak;ij

̸= 0 if and only if Ak;ij ̸= 0. Hence we will show

that with probability tending to 1 for T → ∞, for any Ak;d1d1 satisfying Ak;d1d1 −Ak;d1d1 =

OM (T−1/2) and for some small ϵT = QT−1/2 and i, j = 1, . . . , d1,

∂CL(Ak)

∂Ak;ij
< 0 for 0 < Ak;ij < ϵT (17)

> 0 for − ϵT < Ak;ij < 0 (18)

By Taylor’s expansion,

∂CL(Âk)

∂Ak;ij
=

∂L(Âk)

∂Ak;ij
− Tp

′
λ1,T ,λ2,T ,λ3,T

(Âk;ij)sgn(Âk;ij) (19)

=
∂L(Ak)

∂Ak;ij
+

d2∑
l1=1

d2∑
l2=1

∂2L(Ak)

∂Ak;ij∂Ak;l1l2

(Âk;l1l2 −Ak;l1l2) (20)

+

d2∑
l1=1

d2∑
l2=1

d2∑
l3=1

d2∑
l4=1

∂3L(A∗
k)

∂Ak;ij∂Ak;l1l2∂Ak;l3l4

× (Âk;l1l2 −Ak;l1l2)(Âk;l3l4 −Ak;l3l4)

− Tp
′
λ1,T ,λ2,T ,λ3,T

(Âk;ij)sgn(Âk;ij)

with A∗
k lying between Âk and Ak.

Recall that

T−1∂L(Ak)

∂Ak;ij
= O(T−1/2)

T−1 ∂2L(Ak)

∂Ak;ij∂Ak;l1l2

= E

(
∂2L(Ak)

∂Ak;ij∂Ak;l1l2

)
+ o(1)

The first term is therefore of order O(T 1/2). The second term is also of order O(T 1/2)

because it consists of the Fisher information matrix and o(1), where the latter is negligible

because o goes to 0 faster than O. The third term is obviously faster at 0 due to the

squared OM , meaning it is bounded by OP (T
−1/2)2, hence it goes faster to 0 than the first

and second term. It follows that

∂CL(Ak)

∂Ak;ij
= −Tp

′
λ1,T ,λ2,T ,λ3,T

(Ak;ij)sgn(Ak;ij) +O(T 1/2) (21)
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The first term dominates, because
√
Tgmax,T → ∞. Hence the sign of Ak;ij determines the

sign of ∂CL(Ak)
∂Ak;ij

. Hence the inequalities (17) and (18) hold, which implies that ∂CL(Ak)
∂Ak;ij

can

only be 0 if and only if Ak;ij = 0. This completes the proof.

III.3 Proof of Theorem 2

From Lemma 1 there follows 1. It can be easily shown that there exists an Â·;d1d1 in

Theorem 1 that is a root-T consistent local maximizer of CL((A·;d1d1 ,0)) that satisfies the

likelihood equations

∂CL(A)

∂Ak;ij

∣∣∣∣
A=[A·;d1d1 ,A·;−d1−d1

]

= 0 for i = 1, · · · , d1; j = 1, · · · , d1 (22)

Recall that A·;d1d1 is a consistent estimator,

∂L(A)

∂Ak;ij

∣∣∣∣
A=[A·;d1d1 ,A·;−d1−d1

]

− Tp
′
λ1,T ,λ2,T ,λ3,T

(Ak;ij)sgn(Ak;ij) (23)

=
∂L(A)

∂Ak;ij
+

p∑
l1=1

d1∑
l2=1

d1∑
l3=1

(
∂2L(A)

∂Ak;ij∂Al1;l2l3

+ oP (1)

)
(Ak;ij −Ak;ij) (24)

− T
(
p
′
λ1,T ,λ2,T ,λ3,T

(Ak;ij)sgn(Ak;ij)

+(p
′′
λ1,T ,λ2,T ,λ3,T

(Ak;ij) + oP (1))(Ak;ij −Ak;ij)
)
.

Setting the first derivative equal to 0 and rearranging terms gives

(Ak;ij −Ak;ij) = −
∂L(A)
∂Ak;ij

− Tp
′
λ1,T ,λ2,T ,λ3,T

(Ak;ij)sgn(Ak;ij)

H − TK

= −
1
T

∂L(A)
∂Ak;ij

− p
′
λ1,T ,λ2,T ,λ3,T

(Ak;ij)sgn(Ak;ij)

1
T H −K

,

whereas H =
∑p

l1=1

∑d1
l2=1

∑d1
l3=1

(
∂2L(A)

∂Ak;ij∂Al1;l2l3
+ oP (1)

)
and K = p

′′
λ1,T ,λ2,T ,λ3,T

(Ak;ij) +

oP (1).

The nominator converges in distribution by the Central Limit Theorem to

1

T

∂L(A)

∂Ak;ij
− p

′
λ1,T ,λ2,T ,λ3,T

(Ak;ij)sgn(Ak;ij)
d→ N(0,

I(A·;d1d1)k;ij
T

)−Gk;ij (25)
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By Slutsky’s Theorem, the denominator goes to

− 1

T

p∑
l1=1

d1∑
l2=1

d1∑
l3=1

(
∂2L(A)

∂Ak;ij∂Al1;l2l3

+ oP (1)

)
+ (p

′′
λ1,T ,λ2,T ,λ3,T

(Ak;ij) + oP (1)) → I(A·;d1d1)k;ij + Fk;ij (26)

Combining the two results and writing this in matrix form gives

(A·;d1d1 −A·;d1d1)
d→ N(0,

I(A·;d1d1)

T
(I(A·;d1d1) + F )−2)−G(I(A·;d1d1) + F )−1

(A·;d1d1 −A·;d1d1) +G(I(A·;d1d1) + F )−1 d→ N(0,
I(A·;d1d1)

T
(I(A·;d1d1) + F )−2)

√
T ((A·;d1d1 −A·;d1d1)(I(A·;d1d1) + F ) +G)

d→ N(0, I(A·;d1d1))

Hence by applying Slutsky’s Theorem and the Central Limit Theorem, we find

√
T ((A·;d1d1 −A·;d1d1)(I(A·;d1d1) + F ) +G)

d→ N(0, I(A·;d1d1)) (27)

This completes the proof.

IV Tables - Appendix
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