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Abstract

The information provided by blockchains of cryptocurrencies is immense and diverse.

Blockchain information are represented by networks, the transaction network and the

user network, approximated by the entity network. We review heuristics for constructing

the entity network out of the transaction network, and discuss how they have been

used, improved, and developed over time. We introduce network analytics applied to

blockchain data, which supports finance and economics research to look into location

identification, fraud detection, and price investigations of cryptocurrencies, among other

topics. We inspect how they make use of network analytics, often tailored to the specific

properties of blockchains. By this comprehensive overview, we intend to aid research on

the use of blockchain information to understand user behaviours and the corresponding

price behaviours of cryptocurrencies.
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1 Introduction

Fourteen years ago, there was only one cryptocurrency. Now there are 13000. Nine years

ago, it was soaked with suspicious reputation of illegality. Now, cryptocurrencies have

huge market capitalisation, active trading communities and indubitable interest from the

mainstream.

It has all started from the famed Bitcoin. Proposed by Satoshi Nakamoto in 2008 to get

rid of trusted third parties in payments, this immensely popular and influential electronic

decentralized currency depends on a peer-to-peer network with a proof-of-work system to

verify the transactions Nakamoto (2008). Altcoins, cryptocurrencies other than Bitcoin,

soon followed with Bitcoin as their technological prototype.

With the increase in the price for Bitcoin and other altcoins, people began to add them

into their portfolios. Studying the financial properties of cryptocurrencies became impor-

tant. How would cryptocurrencies perform when they are added to a portfolio consisting

of other assets (Petukhina et al., 2020)? What are their diversification properties and fi-

nancial factors (Liu and Tsyvinski, 2021)? How to identify a cryptocurrency’s idiosyncratic

risk (Guo et al., 2020)? Studies answering these questions tend to focus on the time series

properties of coins.

But there is another way of looking at things. Each cryptocurrency is powered by a

blockchain. As the underlying platform and engine of a cryptocurrency, blockchain charac-

teristics cannot be irrelevant to the financial characteristics of the cryptocurrency and to

its overall success. Are user behaviours on the blockchain relevant to the price of a coin

(Cong et al., 2021c)? Will network measures and computing power of a blockchain impact

the coin’s expected returns (Bhambhwani et al., 2021)? Can we construct pricing models

out of blockchain network characteristics (Liu and Tsyvinski, 2021; Cong et al., 2021a)?

To answer these questions, we need to turn to the network analytics of blockchains and

cryptocurrencies.

Network analytics of the blockchain are powerful tools to understand the behaviour of

users in the ecosystem defined by any particular blockchain. Understanding user behaviour

goes beyond its financial implication, since there is a lot of talk about its application outside

the realm of cryptocurrencies, such as tourism (Önder and Treiblmaier, 2018), healthcare

(McGhin et al., 2019) and supply chain (Saberi et al., 2019). If such applications materialise,

blockchain technology would have profound social and economic impact. But why would

one want to use blockchain technology instead of established technologies? Catalini and

Gans (2020) provided a detailed analysis of the economics of the blockchain. In short, the

magic of blockchains can be summarised by two points: they reduce the cost of verification,

and they reduce the cost of networking.
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Cost of verification arises inevitably in an economy of any respectable scale. Inter-

mediaries increase the risk of “moral hazard,” namely cheating, counterfeiting and other

behaviours that strain trust, in the words of Catalini and Gans (2020), and information

asymmetry in general in any real-world economy, in which most people do not have pre-

established relationships. Blockchain technology helps in reducing the cost of verification

by striking at its roots: because they involve distributed ledgers, there is no intermediary

involved. If an economic activity can be done completely online, the verification cost may

be almost costless.

Cost of networking arises in bootstrapping, running and scaling an economic network.

The relationship between the cost of verification and the cost of networking is close but

nuanced. Over time two types of blockchains arose: permissioned and permissionless. Per-

missioned blockchains can have a significantly reduced verification cost but they do not

necessarily significantly reduce the cost of networking: unlike Bitcoin, they are not entirely

public. Rather like traditional databases, they need an administrator-role to govern the

approved users of the blockchain. Trust needs to be put on the administrator. By contrast,

in permissionless networks, or public blockchains, trust is an unnecessary luxury. Without

trusted intermediaries or privileged nodes of any kind, cost of launching and running a

network is significantly reduced.

These cost reduction advantages of blockchains have the potential to boost applications

in many areas. This further drives the need to understand how users interact on the

blockchain (Meiklejohn et al., 2013), how illegal activity can be identified (Foley et al., 2019),

how users obfuscate their behaviour (Ron and Shamir, 2013), or to identify geographical

user clustering (Trimborn et al., 2022; Makarov and Schoar, 2021). These topics and the

resulting research questions can be tackled with network analytics.

This study introduces network analytics applied to blockchain data, which supports

finance and economics research to look into location identification, fraud detection, and

price investigations of cryptocurrencies, among other topics. We inspect how they make

use of network analytics, often tailored to the specific properties of blockchains.

In section 2 we distinguish between different kinds of networks relevant in the discus-

sion of a blockchain of a coin. Section 3 then discusses the relationships between different

networks and the heuristics to transform one into another. After knowing what the net-

works are, in in section 4 we are going to look at how they are used. Section 4.1 tracks

down the location of cryptocurrency users: useful for economic insights but so much for

anonymity claims. In section 4.2 we filter out irrelevant transactions in a cryptocurrency

networks and keeps only the “economically meaningful ones,” in a sense to be explained

(Makarov and Schoar, 2021). Section 4.3 is about fraudulent behaviours associated with

cryptocurrencies: this is how cryptocurrencies got their bad names. Section 4.4 is about
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financial characteristics of coins, especially their pricing models. Section 5 concludes.

2 Network Types in the Blockchain

First, we discuss and introduce the different kinds of networks which appear or can be con-

structed from the blockchain. We will not introduce and explain Bitcoin and the blockchain

before delving into the details of this study, since there is already a vast literature covering

these topics. We refer you here to the comprehensive introductions into the features of

Bitcoin and the blockchain by Böhme et al. (2015) and Tschorsch and Scheuermann (2016).

Given the Bitcoin scheme, there are three closely related networks we can look at:

• the transaction network;

• the user network;

• the entity network.

A network, or a graph, is a set of objects in which some pairs are related in some

relevant sense. The objects are called points, or vertices (singular: vertex) if you are a

mathematician, or nodes if you are a computer scientist, or sites if you are a physicist, or

actors if you are a sociologist. Related pair of points are connected by lines, or edges and

arcs (maths), or links (computer science), bonds (physics), or ties and relations (sociology).

Graphs are useful abstractions, and they are especially useful here. There are natural

correspondences between elements of a graph (vertices and edges) and elements of the

networks that we are going to look at, such as transactions and transacting; users and their

relationships.

The transaction network captures the flow of bitcoins between transactions. This is

Bitcoin’s original, entirely public transaction graph. Each vertex is a transaction. A directed

edge from vertex a to vertex b represents that an output of a is used as an input of b.

Transaction graphs are also called address graphs.

The user network captures the flow of bitcoins between users. Each vertex is a user of

Bitcoin identified by a public key. A directed edge from vertex a to vertex b represents an

input-output pair of a transaction. The input’s public key belongs to the user of the source,

and the output’s public key belongs to the user of the target. A user of Bitcoin is also called

an owner or a controller, though we will stick to user. Analysis of the user graph elucidates

the interactions between different economic players. It can tell us who the users are, where

they are situated geographically, and which types of businesses they are involved in.
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However, for all intents and purposes, the true user graph is unknowable. The Bitcoin

scheme has the reputation of being anonymous. While the degree of anonymity it offers

is a topic of hot debate, there is some truth to it. First, intrinsic to the Bitcoin protocol,

the true identities of users are not linked with public keys. A single user can control many

public keys, and a single public key can be controlled by many users. Second, user habits

further obfuscate their identities. It is declared good practice for users to generate a new

address for every transaction. People also mix and launder, gamble and steal.

Researchers managed to approximate the user graph well-enough to derive insights that

we want from it. The entity network is the working graph that researchers get as an

approximation to the unknowable user network. User network is the real thing: entity

network is an unavoidable compromise. The networks amenable to study, therefore, are the

transaction network and the entity network.

3 From Transactions to Entities

With the degree of anonymity offered by the Bitcoin protocol, it is doubtful whether we

can ever achieve a full trace of users from their transactions. Yet some trace is better than

none. We can achieve a good approximation of the user graph, dubbed the entity graph.

There are three major heuristics to contract the transaction graph into the entity graph:

1. the heuristic of multi-inputs,

2. the heuristic of change addresses, and

3. the heuristic of off-network information.

Other minor ones abound.

The work “heuristic” is proper here. In contrast to a proof or an algorithm, a heuristic

is a special approach to problem-solving that is experimental and relies heavily on trial and

errors. None of the heuristics that we shall see is foolproof. They are empirical, context-

dependent, ad hoc even. However, it can be argued that they work reasonably well, and

the entity graph they generate offers us important insight.

3.1 Multiple Inputs

Heuristic 1 For multi-input transactions, treat the addresses of the inputs as the same

user.
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Heuristic 1 was first identified by Nakamoto himself in Nakamoto (2008). He realised

this when discussing anonymity:

Some linking is still unavoidable with multi-input transactions, which nec-

essarily reveal that their inputs were owned by the same owner. The risk is

that if the owner of a key is revealed, linking could reveal other transaction that

belonged to the same owner.

Why is it reasonable to link multiple inputs? Because each sender needs to know the

private key belonging to each public key used as an input to the transaction. The public key

is known publicly to everyone on the blockchain. Users require a private key to proof that

a transaction, signed with a public key, belongs to them. Hence, users have an incentive to

keep their private keys as safe as possible. Whoever possesses the private key has access

to the funds signed with the public key. If a collection of public keys were controlled by

multiple entities, then they would need to reveal their private keys to each other. The idea

is that this is unlikely, though not impossible.

With hindsight, we now know that this assumption does not hold infallibly. Benignly,

web wallets, for example, pool many private keys. They would be mistakenly identified as a

single entity. Maliciously, by taking care to make sure that his multiple addresses are never

used in a single transaction, a user can deliberately conceal the true connection between

his addresses. As a result, as pointed out by Makarov and Schoar (2021), the multi-input

heuristic provides a lower bound for the actual number of users.

Heuristic 1 of multi-input is implemented by Reid and Harrigan (2013). True to Nakamoto

exegesis, their overriding concern was with the breakdown of anonymity. Taking the above

cited passage as a hint, they merged any vertices with undirected edges where each edge

joins a pair of public keys that are inputs to the same transaction. From the transaction

graph, they contracted an entity graph.

They immediately identified crucial differences in features between the transaction and

the entity graphs. The transaction graph has neither multi-edges nor loops. It is also a

directed acyclic graph, which means that the output of a transaction can never be an input

to the same transaction, either directly or indirectly. On the other hand, the entity graph is

much messier. It does contain multi-edges (a user sends multiple transactions to himself),

loops (a user send to an account of his own and then send back) and directed cycles.

Heuristic 1 using multi-inputs is popular and became the de facto default method for

contraction from the transaction graph into the entity graph. Lischke and Fabian (2016),

in their data preprocessing, first contracted the transaction network using the multi-input

heuristic before further processing the data with off-network information. Makarov and
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Schoar (2021), to get their “most complete information about crypto entities that have been

used in academic research up to this point,” they scraped cryptocurrency blogs, websites,

and the database Bitfury Crystal Blockchain. They then contracted the transactions graph

based on the multi-input Heuristic 1 and got 1,032 entities, including 63 mining pools, which

further illustrates the fact that this heuristic gives us a lower bound. Other notable studies

that used this heuristic include Ron and Shamir (2013), Meiklejohn et al. (2013) and Athey

et al. (2016).

3.2 Change Address

Heuristic 2 The change address is controlled by the same user as the input address.

The change address is an offspring of a peculiar idiom of use of the Bitcoin scheme. I

want to buy a bottle of water worth $1, but I only have $5 notes with me. I give you a

$5 note and you give me back $4 of change. Similarly, change addresses are used to give

money back to the input entity in a transaction. But unlike cash transactions, in which

case you give the money back into my hands, Bitcoin change addresses are generated by the

Bitcoin client. These change addresses are not chosen by the input entity and should not

be reused by the user. As a result, it is likely that the change address and the input address

are controlled by the same entity. If we can identify these change addresses reliably, then

by linking the change address to the input address, we can further contract the transaction

graph.

This line of thought is pursued by Androulaki et al. (2013). They called the change

address the shadow address. The main idea is that if a transaction has two outputs, with

one public address and one newly generated address (the shadow), then the shadow address

belongs to the entity who initiated the transaction. The thought is that it is likely that the

input entity is receiving change. However, the assumption they relied on in their study is

not maintainable and is in fact routinely violated. In real life, entities issue transactions to

different users, much more than two, all the time, for example, in mining pools or bets on

gaming sites.

As a result, Meiklejohn et al. (2013) took the matter more stringently. They imposed

four conditions before identifying an address as a change address: 1) this address cannot

have appeared before, 2) the transaction cannot be a coin generation, 3) there is no self-

change address, and 4) for all outputs in the same transaction, only this address is making

its first appearance.

Recall that Heuristic 1 of multi-inputs relies on assumptions that may not be true. If

anything, Heuristic 2 of change address is even less robust. The existence and features of
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the change address are heavily dependent on the present idiom of use and is not inherent

in the Bitcoin protocol itself.

Heuristic 2 is also tricky to implement. After Meiklejohn et al. (2013) ran the analysis,

they ended up with a giant super-cluster containing 1.6 million public keys, including those

of the popular services Mt. Gox, Instawallet, BitPay, and Silk Road.

As a result, they imposed further conditions. Sometimes the same change address is

used twice, and if the second use is with a new address, the new address would be falsely

labelled as the change address. They got rid of those problematic transactions to make the

heuristic more robust. Heuristic 2 based on change address, as a result, depends on the

unique situations within the blockchain.

And Heuristic 2 has several variants. Another notable one was introduced by Athey

et al. (2016). They based their heuristic on a observation of human psychology. If I give

you change, for example, it is unlikely for me to give you tortuous amounts, or in Athey

et al. (2016) words, amounts that are “cognitively-difficult”, such as $4.94275. More likely

I would just generously say: “forget about it, let me give you $5.” Athey et al. (2016)

therefore conjectured that if a transaction has two outputs, and if one of them has 3 more

decimal places than the other (3 is a heuristic and is not based on intrinsic reasons), then the

output with more decimal places is the change address as it is less likely users would send

such “cognitively-difficult” amount to each other. They supplemented Meiklejohn et al.

(2013) one-time change address heuristic with their own decimal-place heuristic to contract

the Bitcoin transaction graph.

Apart from developing the Heuristic 2 of change address, Meiklejohn et al. (2013) also

actively engaged in Bitcoin transactions with various services. Because they, of course,

knew what public keys they themselves have used, the public key on the other end can

be explicitly tagged as belonging to the service they are interacting. They also scouted

in forums and other places online to look for addresses claimed publicly. These activities

cannot be found in the network themselves: they are squarely within the realm of the third

heuristic, to which we now turn.

3.3 Off-Network Information

Heuristic 3 Anonymity can be further broken down by off-network information.

It is impossible to live without leaving some trace. Although users are not linked to their

Bitcoin addresses explicitly, there are always some giveaways. Sometimes these off-network

information is enough to link addresses to users. A good contraction does not only rely on

features of the transaction network, but on extra information that is circumstantial and not
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intrinsic to the network itself.

This line of thought is first pursued by Kaminsky (2011) in concurrence with Reid

and Harrigan (2013). Kaminsky exploited the fact that Bitcoin is an electronic currency

requiring Internet connections. His assumption is that the source of a transaction is the

first node that informs you of that transaction. Kaminsky proposed to map IP addresses to

Bitcoin public-keys by making connection to all public peers in the network simultaneously.

Again, this assumption is not infallible, though Kaminsky is reasonably confident about it:

“[this is] more or less true, and absolutely over time.”

Reid and Harrigan (2013) integrated some other network information to de-anonymize

users. They considered a wide variety of sources to glean their off-network data. For

example, they scraped the Bitcoin Faucet, where IP addresses are published together with

the history of recent giveaways. They also searched in Bitcoin Forums where users attach

public keys to their signatures, Twitter streams and user-generated public directories. They

acknowledged the ad hoc-ness of their endeavour and that a larger, more centralized Bitcoin

service provider can perform the same analysis with their user information more reliably

and on larger scale. But their attempt is an invaluable proof-of-concept. By integrating

such a rich variety of off-network data to the entity network, it is possible to construct the

entity network as a very good approximation to the real, unknowable user network.

Apart from discussing the multi-input Heuristic 1 and the change address Heuristic 2,

Meiklejohn et al. (2013) also considered off-network data to aid the contraction. Other than

passively spending time in Bitcoin Forums and other online places to find user disclosures,

which they served “manual due diligence” and regarded as “less reliable,” they actively

transacted with a wide variety of Bitcoin services. Because they know which user they are

transacting with, they can tag users by observing the addresses they used. They mined with

major mining pools, kept money in wallet services, engaged in bank exchanges and non-

bank exchanges, purchased physical and digital goods with vendors, gambled with poker

sites (but not dices because they already advertise their public-keys), and interacted with

mix and laundry services, where some services sent their own coin back and others simply

stole their money.

Lischke and Fabian (2016) is another example of using both Heuristic 1 of multi-inputs

and Heuristic 3 of off-network information. After contracting the transaction network us-

ing Heuristic 1, they considered IP addresses and business tags from the initiator of the

transactions. To deal with Tor and proxy nodes, they downloaded all current Tor server

and the addresses of Tor server exit nodes, which resulted in the finding that around 1% of

nodes might used a Tor network. Their study is therefore also a refinement of Kaminsky’s

pioneering talk, Kaminsky (2011), which did not deal with proxies.
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4 Blockchain Analytics in Finance and Economics

Networks on the blockchain in hand, we are ready for the economic and financial implications

of the blockchain.

4.1 Location Analysis

Identifying the geo-location of users is one of the most important goals of Bitcoin network

contraction. The mainstream method of tracking down users’ geo-location is by analyzing

their IP addresses. This line of analysis has a venerable history. Reid and Harrigan (2013)

already realised that the Bitcoin Faucet can map users to geo-located IP addresses, and it

would be interesting to know where people are using Bitcoin. They went as far as producing

a map-plot of the users receiving bitcoins from the Faucet. This is done in larger scale by

Donet Donet et al. (2014), which we will discuss later in more detail in the connection with

Bitcoin address propagation.

Knowing the whereabouts of users is interesting in itself. There are, however, deeper

reasons for performing geo-location analysis. Geographical concentration can bear risks

for the functioning of the blockchain system. As (Makarov and Schoar, 2021) pointed

out: “geographical concentration increases the risk that a private or a state actor in one

part of the world [...] could gain control over the network and inflict large losses on the

general public and financial institutions if they are holding bitcoins.” Such a situation

could arise due to several situations. For example, if the combined computing power of

all users of a blockchain network in one town is large enough, they could take together

control of the network. Also if a significant number of miners is located in the same area

and a power outage appears, the blockchain network would be seriously disrupted due to

the inability of these miners to contribute to its operations for the duration of the power

outage. Consequently, geographical analysis of blockchain users provides important insights

into the risks the network is exposed to.

There are four prominent ways to track the geo-location of a blockchain user:

• Relaying node IP tracking (section 4.1.1)

• Bitcoin address propagation (section 4.1.2)

• Off-network information collection (section 4.1.3)

• Miner geo-tracking via cashout behavior (section 4.1.4)

Let’s turn to them one by one.
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4.1.1 Relaying Node IP Tracking

Nodes in the Bitcoin transaction network are not all created equal. Some of them act as

coordination nodes, or “relaying nodes,” which transmit the information of a newly recorded

transactions to all users. The address of these relaying nodes are publicly known: one can

track their IP addresses by connecting to them. And the relaying node which relays a

transaction first should be the one closest to where the transaction originated. This line of

thinking gives us a viable way to estimate the origin of a transaction, which is a variant of

Heuristic 3 above.

Heuristic 3.1 Transaction takes place where the node first informs about it.

Though this Heuristic 3.1 of IP addresses is reasonable, it holds true only without the

widespread use of proxies.

Lischke and Fabian (2016) performed a comprehensive mapping between IP addresses

and geo-locations. They extracted IP-addresses of Bitcoin users from Blockchain.info, and

identified 40,329 distinct geo-locations. Of course, as all heuristics, the link between trans-

actions and IP addresses is not an infallible one. They reported that around 70% of the

transactions can be linked to an IP address. As of 2016, the time of their writing, based

on the geo-locations of the IP addresses, they identified the active markets in terms of the

number of transactions and the associated value of bitcoins. The US takes an undeniable

lead, followed by Germany. With a sharp decrease, France, Russia and Canada are the next

contenders.

Can we go further than throwing darts onto the map? Trimborn et al. (2022) looked at

the time dependent impact of Bitcoin transactions in different geo-locations. They again

followed the above Heuristic 3.1. After grouping their data continent by continent, they fur-

ther broke each continental group into ten according to transaction sizes. Not surprisingly,

Antarctica is not worth a mention. They therefore ended up with 60 groups, ten for each

of the remaining continents, Africa, Asia, Europe, North America, Oceania (Australia) and

South America.

By focusing on transaction data of these 60 groups from 25 Feb 2012 to 17 Jul 2017, a

time series of daily log accumulated transactions, they already made interesting observations

using just descriptive statistics. In short, European and North American transactions were

large and steady. In terms of transaction sizes, Europe and North America took the lead,

followed by Asia and Oceania, and then by Africa and South America. In terms of volatility,

Europe and North America have steady transactions sizes, whereas the other continents were

very volatile, with days of zero transactions on end.

With a time series of Bitcoin transaction records to hand, an obvious question to ask
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is: “Do Bitcoin transactions in the past influence Bitcoin transactions in the future?” “Of

course” is the answer, but how can we study it?

Trimborn et al. (2022) constructed a time-dependent model to analyse the 60 groups

across time and space. The model considers each group as potentially influential for all the

other groups. Via regularising the groups informative value for the transaction behaviour

on other continents, the group with a steady impact on all the other groups remain. Across

time, they analysed the occurrence and vanishing of structural influence in the Bitcoin

blockchain over the years. 2012 is particularly active. In 2012 Bitcoin first captured the

imagination of the mass. Together with its activity, its price shoot up from $5.27 to $770
by 2014. However, as other cryptocurrencies, or altcoins, began to emerge, Bitcoin had

its hibernation and did not show network effects from 2013 – 15. Something out of the

ordinary must have happened in 2016. Not only did Bitcoin again turned active, the price

again went up.

Across space, their analysis is a pronounced reminder of the true international character

of Bitcoin. Asia, as the place where most mining farms located, often has the greatest

media attention. Europe and North America, as developed regions and financial centres,

are also assumed to have a lot of Bitcoin flows. However, they showed that South America

and Africa are showing network effects of significant magnitude. In fact, apart from 2014,

South America are outperforming North America and Europe. Through the mining farms

in Asia, people in every corner of the world are contributing to the Bitcoin blockchain.

4.1.2 Bitcoin Address Propogation

Each Bitcoin node aims to maintain at least eight connections. The maximum connection

is usually set at 125 (maxconnections). A caveat is that, as reported in Miller et al. (2015)

in a study of Bitcoin’s public topology by studying Bitcoin’s peer-to-peer link using their

technique of AddressProbe, many nodes in fact exceed the number of the supposed maxi-

mum connection persistently over 80 times. These high-degree nodes are primarily mining

pools and wallets.

Bitcoin nodes, like employees with roll-call attendance responsibilities, announce their

own IP address every 24 hours (addr message) throughout the network. Nodes can also

actively ask for IP addresses using the getaddr message. Those nodes receiving the getaddr

message would duly response. Instead of disclosing everything they know, however, nodes

only include 23% addresses they know randomly, and in any case not above 1000 of them.

By doing this, the Bitcoin protocol deliberately tries to mitigate the risk of information

eclipsing. Information eclipsing can happen spontaneously or maliciously. If a villain dom-

inates the environment of a node, what information gets to the node will be solely at his

mercy. He may decide to report the correct information, but he may also decide to double-
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spend for fun. By disclosing only a small part of the IP addresses a node knows, that node

is protecting itself from the threat of the villain which comes with the intention of filling

up a node’s neighbour with compromised IPs in mind.

The getaddr() command gives us another way to find out where Bitcoin users are located

in the world. Donet Donet et al. (2014) extracted more than 800,000 IP addresses by

exploiting precisely the getaddr messages. Everyday at 9am from 30 November 2013 to 5

January 2014, they issued getaddr() command to a set of seeds, and then recursively to the

nodes connected to those seeds. By thus discovering the neighbours of the initial nodes,

and their neighbours, and their neighbours’ neighbours, they collected a giant list of IP

addresses running a Bitcoin node.1

From this list, Donet Donet et al. (2014) were able to identify the geographical location

of Bitcoin nodes. Not surprisingly, the United States and China are where most of the nodes

located, followed closely by Germany, Russia and the United Kingdom. They also calculated

the Bitcoin adoption rate, normalizing the above with the number of internet users in each

country, and the list of countries appeared quite differently. Now the leading countries

are the Netherlands, Norway, Finland and the Czech Republic. And their summary is a

true testimony to the viral popularity of Bitcoin: “there are Bitcoin nodes all over the

world, with very low populated areas and underdeveloped countries being almost the only

exceptions.” Reminiscent of NASA’s breathtaking photo of the Earth’s city lights, in their

geo-location plot, discovered nodes thickly dotted all the continents, with the sole exception

of Antarctica.

4.1.3 Off-Network Information Collection

Athey et al. (2016) conducted a geo-location analysis on Bitcoin users without relying on

their IP addresses. Rather, they used the random forest algorithm, which is a generalization

of the simple decision tree, to identify the regions of transactions.

They got their training data sample from Bitcointalk.org, which is a website filled with

user gossip about their geo-locations. They scraped it and got 2995 addresses labelled with

geo-locations. They then grouped all countries into four groups, not following geographical

continent demarcation specifically: the Americas, Europe, Asia and Eastern Latin America.

After training with random forest, they used their model to predict the origin and shares

of the full data.

About the performance of the model, they reported that: “it may be surprising that

1It is noteworthy that Kaminsky (2011) in his talk already proposed the method of “recursively ask
every node about every other node it knows about” using the getaddr message, and proposed to start from
hardcoded seeds. This seems to be a case of independent rediscovery on the part of Donet Donet et al.
(2014) because they seem to be unaware of this.
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the error rate is as low as it is, given the small size of the training dataset and the fact that

a large share of users engage in only a few transactions per user.” With a larger or more

representative training dataset, organizations and agencies that are interested, by virtue of

conducting a similar analysis, have the prospect of making very accurate predictions of the

geo-locations of users. This is good news for some (e.g. law enforcement) and bad news for

others (e.g. criminals or those who otherwise wish to remain anonymous).

Finally, it should be noticed that Athey et al. (2016) random forest classification does

not seem to be as fine-grained as the approach based on IP addresses. Random forest is

only possible to place entities into large geographical bins, but not pinpoint them on the

map.

4.1.4 Miner Geo-Tracking via Cashout Behaviour

Makarov and Schoar (2021) proposed a heuristic to track down the geo-location of Bitcoin

miners in particular. They focus on the exchanges in which miners cash out their rewards.

Their heuristic is based on the thought that miners are likely to send their rewards to an

exchange in the region in which they are themselves physically located. Their heuristic is

therefore

Heuristic 3.2 Miners are physically located in the area where they send their rewards to.

By following this Heuristic 3.2, they distinguished between four categories of exchanges:

Chinese, US-Europe, International and Other. Chinese and US-Europe are just what their

names advertised. Others include those transactions that operates in areas other than

China, the US and Europe. The International category involves trans-jurisdiction ex-

changes, so tracking down these flows may not give us valuable information about the

whereabouts of the miners. As of 2021, they found that Chinese miners carry the most

weight in the landscape, responsible for around 70% of all the transactions.

Apart from geo-locational analysis, Bitcoin network contraction also has several other

applications. Other popular analyses include

• Industry type: what uses are bitcoins being put by individuals and companies? Athey

et al. (2016)’s analysis identified thirteen major uses, with exchanges being the top use

by far. Interestingly, in second place is a cluster of industries labelled by them as “un-

known.” Lischke and Fabian (2016) did further analysis in this respect. Going above

a cross-section characterization, they identified a changing application pattern of bit-

coins in different businesses. Under their analysis, donations, wallets and gambling

are important.
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• User type: who are using bitcoins? Are people short-term users or long-term users?

Are people transactors, miners, or merely investors? Athey et al. (2016) looked into

this question and discovered that long-term, frequent users are in fact only a minor-

ity. Rather, most people tend to hoard their bitcoins. Investors are therefore most

important in contributing to Bitcoin transaction volume. Their analysis confirmed

the earlier findings of Meiklejohn et al. (2013): although people began to spend their

bitcoins since 2011, hoarders still exist in legions. Ron and Shamir (2013) gave a very

early analysis of Bitcoin’s user type. At the early time of their writing, they found

that 78% of all bitcoins were left in addresses that only received but never sent out

bitcoins.

4.2 Blockchain Analytics for Price Investigations

Why is it important to investigate cryptocurrency pricing? Apart from the usual reasons for

conducting studies on pricing, cryptocurrencies are special in this respect. Many of them

are unbacked by any underlying assets or supporting foundation/company, its exchange rate

is therefore governed by different fundamentals than other assets. As a result, the pricing

series of cryptocurrencies attracted much attention.

In the absence of regulation, it is plausible to postulate that Bitcoin prices are governed

by “economic fundamentals,” i.e. supply and demand. This is precisely what Athey et al.

(2016) thought. They built a model which demonstrates that the Bitcoin exchange rate

is grounded in supply and demand, and exchange rate rises with usage. Their central

theoretical conclusions are

• There is a unique equilibrium exchange rate in each period determined by supply

and demand provided that a) no investor is present and b) all agents adopt Bitcoin

eventually.

• If investors buy bitcoins, the effective supply for users decreases and the market equi-

librium price increases.

• Bitcoin adoption and exchange rates are influenced by beliefs about Bitcoin.

In short, more intense activity on the blockchain means an increased demand for the use of

it.

As they themselves noted, in reality, things are perhaps more complicated than in mod-

els. In particular, their model does not take into the account the competition provided by

altcoins, or traditional banking itself. Another thing to note is that they did not take into

account of state variables of users other than beliefs. Heterogeneous beliefs and speculative

bubbles, something that Bitcoin may be especially prone to, are also not considered.
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In addition, for each cryptocurrency, its blockchain and the behaviour of users on it

impact its price. Following this thought, Pagnotta and Buraschi (2018) constructed a model

to study the price equilibrium of Bitcoin as a function of its blockchain characteristics, such

as the hashrate. A higher hashrate indicates that miners are dedicating more computing

power to the network. It is sensible to assume that hashrate and price are related. More

computing power dedicated to a cryptocurrency is associated with higher costs, and so the

reward need to be higher to make up for this. However, the reward is fixed and, in the

case of Bitcoin and many other cryptocurrencies, halves regularly. As a result, if hashrate

increases, the price has to go up. If the price does not go up, miners would just lower

their dedicated computing power, namely lower the hashrate. Price and hashrate are in

equilibrium.

Financial factors to explain movements of cryptocurrencies on the exchanges are also

interesting. A financial factor is a constructed variable which is proven to have an impact

on asset prices. The most famous financial factors were discovered by Fama and French

(1992) which comprise, among others, the book-to-market-ratio. This factor describes the

difference between the market value of things owned by a company, and their value in the

accounting books. If the assets of a company worth more than they are in the accounting

books, this will influence the price of the company’s shares.

What are the financial factors for cryptocurrencies? Bhambhwani et al. (2021) con-

structed such factors for the network size of the blockchain using unique addresses and the

hashrate (proxy for computing power). They showed that these two factors are positively

associated with the return structure of the cryptocurrencies in their sample.

This empirical analysis of the positive relationship between the hashrate and the price

supports the theoretical model of Pagnotta and Buraschi (2018) and Athey et al. (2016):

a higher number of unique addresses implies a larger number of active users. And a larger

number of active users raises demand for the cryptocurrency in question and therefore

increases its price.

Following the same path, Cong et al. (2021a) built an asset pricing model and construct

financial factors based on the growth in addresses of the underlying blockchain. Their

findings also point towards that network activity and size are important for the price of a

cryptocurrency, which further support the theoretical model of Athey et al. (2016). They

constructed five weekly re-sorted portfolios, sorted by quintiles of the growth in transactions

with balance, and growth in total transactions. In a long-short analysis, the portfolios sorted

by their financial factors produced a statistically significant difference in returns.

They also constructed financial factors for the growth in the total on-chain transaction

volume, measured once in terms of tokens and also in terms of the total value of tokens

in USD. However, for these factors, the difference in returns was statistically insignificant.
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They cannot explain the cryptocurrency price dynamics.

4.3 Filtering for Relevant Transactions

Not every transaction on the blockchain is relevant for analysis. Based upon the target of

ones study, different types of transactions are important. To be able to extract the relevant

transactions from the blockchain, we have to consider first the transaction patterns which

commonly appear. E.g. if one is interested in identifying who holds currently a coin, the

initial and final transaction of the coins history are relevant. The rest can be omitted hence

simplifying the analysis. Bitcoin transaction patterns can be grouped into the following

categories, as comprehensively traversed by Ferrin (2015):

For single transactions, Bitcoin follows

• Peel transactions. This is the most common type of transaction on the Bitcoin

blockchain. They can have any number of inputs, but only two outputs. One output

is the receiver’s, the other is the change address.

• Sweep transactions. They combine multiple inputs into one output: many inputs are

swept into one.

• Distribution transactions. They can have any number of inputs, but they have more

than 3 outputs. They are mostly used when a single organization pays many parties.

• Relay transactions. They have one input and one output. This is also a popular

pattern. Bitcoins can be moved from one address to another without leaving traces

such as change addresses, which are seized by analyzers using e.g. Heuristic 2 to break

down anonymity.

• Self-spending transactions. They can have any number of inputs and outputs. Their

distinguishing feature is that one or more of the input addresses also appears as output

addresses in the same transaction.

• Meta-transactions. In those transactions, external data is inserted into the transaction

to enhance the stability and trustworthiness of the Bitcoin blockchain.

• Joint transactions. In contrast with sweep transactions, where addresses are swept

into one, in joint transactions, different transactions are combined into one larger

transactions using some protocol.

Note that some of the transaction patterns can be layered. For example, a transaction

can both be a peel and be a self-spending one: someone careless may just use his old address
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as the change address. One can also sweep into his own address, making it both sweep and

self-spending. There can also be meta-peels and meta-relays.

For multiple transactions, Bitcoin follows

• Peeling chains. They are a series of peel transactions. The start of a peeling chain

is usually an address that contains a significant amount of bitcoins. Then, a small

amount is peeled from it, and a small amount is peeled from the remainder, and so

on. Peeling chains are the focus of study of several important works, including Ron

and Shamir (2013), Meiklejohn et al. (2013), Makarov and Schoar (2021).

• Green addresses. In these transactions, bitcoins pass through a single publicly known

address that is trusted by the receiver of the coins.

• Mixing clouds. Also known as tumblers, mixing pools and washers. They are multiple

interconnected joint transactions. As the names suggest, mixing cloud transactions

aim to be very difficult to trace.

• Tunneling. These are the transactions that have connections outside of the blockchain

in question. This is a technique advertised by some Bitcoin services for anonymity:

bitcoins are shifted from account to account and finally to another address of the

original owner.

Some of the outlined transaction patterns can be utilized to cluster different transac-

tion/addresses into a single entity. In particular, for example, Heuristic 2 depends on change

addresses. Other transaction patterns, such as meta-transactions, joint transactions, green

addresses, mixing clouds and tunnelling are designed to obfuscate the true users behind the

scene.

Chang and Svetinovic (2018) went beyond Heuristics 1 and 2 and performed clustering

using different Bitcoin transaction patterns. In peels, they identified the owner of the

sending address and the owner of the change address (in effect, Heuristic 2). They identified

all addresses that participate in self-spending transactions. They grouped all the relay

addresses. For sweeps, they first identified the transactions that have more inputs than

average, and grouped the input and output clusters together if they are different in number.

Chang and Svetinovic (2018)’s work is a vivid reminder that as Bitcoin transaction pat-

terns evolve, our heuristics to contract the transaction graph also need to change. Although

apart from Heuristic 1 and Heuristic 2 and their extensions as outlined in section 3, the

other clustering methods did not seem to have caught on, it is worth reminding ourselves

that they are certainly not the only heuristics. Other heuristics based on other Bitcoin

transaction patterns may give better clustering results that better approximate the user
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graph. It is most valuable when we use multiple heuristics together to make the most of

the advantages of all.

The peeling chain is the most interesting among all transaction patterns. As briefly

described above, peeling chains typically begin with addresses that have significant amounts

of bitcoins in them, and then in subsequent transactions tiny amounts gradually peel off

into a myriad of addresses after hundreds, even thousands of hops. It is also noteworthy

that peeling chains sometimes can be chained themselves: tiny amounts can be aggregated

again into a new account, forming the beginning of another peeling chain.

Ron and Shamir (2013) already noticed the peeling chain pattern, although they did not

use this term. They call peeling chains “fork-merge patterns:” they noticed that a “frequent

scenario” in Bitcoin involves the transferring of bitcoins to many intermediate addresses (the

forks), and those addresses are merged into another address (the merge). Ron and Shamir

(2013) investigated a particular case, where an entity, owning 90,000 bitcoins, transferred

this amount of tokens using 90 different addresses in 90 transactions, and all back to itself:

an example of a peeling chain and a self-loop.

Peeling chains received a greater scrutiny in Meiklejohn et al. (2013), where Heuristic

2 is first being introduced. By utilizing Heuristic 2, Meiklejohn et al. (2013) were able to

follow a peeling chain in detail. At each hop, they followed the change address to the next

hop, and at each step they were able to recognize the “meaningful recipient,” i.e. the peel,

of the transaction, namely, the address that is not the change address.

Makarov and Schoar (2021), like Chang and Svetinovic (2018), consider further heuristics

based on transaction patterns of bitcoins. They consider two based on peeling chains.

Heuristic 4.1 Addresses on a peeling chain belong to the same entity.

Heuristic 4.2 Backtrack volume on a peeling chain to the original address. Discard inter-

mediate addresses.

Implicitly, Meiklejohn et al. (2013) and most of the others that addressed this issue is

following Heuristic 4.1 (Ron and Shamir, 2013; Akcora et al., 2017). Makarov and Schoar

(2021), however, focused on Heuristic 4.2, using a recursive algorithm for the backtracking.

They used peeling chains to get rid of the great number of intermediate addresses, which

allows one to get rid of much spurious volume on the Bitcoin blockchain.

What is “spurious volume” on the Bitcoin blockchain? Makarov and Schoar (2021) take

it to mean the transactions that are not economically meaningful. Economically meaningful

transactions are those that involve true financial transfers between two parties. Alice buys

a bottle of water from Bob and pays him $1: this is economically meaningful. On the
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other hand, Alice may transfer her money between her own different bank accounts out of

boredom: these transfers are then spurious in Makarov and Schoar (2021)’s eyes.

Why is it important to distinguish between spurious and economically meaningful trans-

actions? One consideration is very practical. If we can get rid of the spurious transactions

on the Blockchain, the remaining network would be much pared down, reducing computa-

tional burden. Further, and more importantly, by focusing on the economically meaningful

volume, we can get a fairer picture of how Bitcoin is used.

Makarov and Schoar (2021) branded all the intermediate addresses on peeling chains as

spurious. By discarding all the intermediate addresses, they pared down the database from

869 million addresses to 640 million addresses. After clustering, they obtained 189 million

clusters, within which 116 million contained only transactions with addresses used once.

Addresses appearing only once on the blockchain challenge any analysis of the transaction

graph since they cannot be linked with other addresses without off-chain information.

4.4 Fraud Identification

Scamming cryptocurrency users, stealing tokens, manipulating exchange rates: these fraud-

ulent behaviours are commonplace in the cryptocurrency market. We observe liquidity, but

this liquidity can be a fake. This is achieved by wash trading, looked at by Cong et al.

(2021b) and Amiram et al. (2020).

Even the actual price of a cryptocurrency can be manipulated. Griffin and Shams

(2020) detailed a famous case. During the market frenzy of 2017, the price of Bitcoin was

lifted by the trading activities of a trader with Tether, another cryptocurrency. Using the

blockchains of Bitcoin and Tether, they found that Tether were sold on various exchanges

in exchange for Bitcoin at market downturns. Bitfinex was a favourite place. This resulted

in an increase in Bitcoin price. Sinisterly, this behaviour was so systematic that there are

ample reasons to believe that the price was manipulated.

Especially during the early days of cryptocurrencies, it was commonly assumed that

the vast majority of transactions are linked to illegal activities. Silkroad was a case in

point: this platform using bitcoins sold all kinds of illegal substances and services. Foley

et al. (2019) investigated the extent of illegal activities financed by bitcoins. Their estimate

was that 46% of the transactions in their data sample are linked to illegal activities. They

linked blockchain data with known Bitcoin seizures by law enforcement agencies, users from

darknets and users identified in darknet forums involved in the use of bitcoins for financing

illegal activities. Fortunately, they further found that with the emergence of altcoins that

are more privacy preserving, and with an increased mainstream interest in cryptocurrencies,

the share of bitcoin-financed illegal activities decreases.
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Bitcoins themselves can be stolen. Turning back to our previous discussion of the peeling

chain, see section 4.3: it is natural for criminals to peel. A thief may steal bitcoins, but

since the Bitcoin blockchain is public, he has nowhere to hide if the original owner tracks

down his sinful address. Things are very different if he peels away: he can create multiple

addresses and hop bitcoins along them. Unless the owner is truly determined, this practice

obfuscates the whereabouts of the money and is difficult to track.

Meiklejohn et al. (2013) were truly determined. Armed with Heuristic 2, they looked

into three case studies, all criminal in nature, of the peeling chain.

(1) The Bitcoin theft on 11 Apr, 2012 is one of the earliest examples of Bitcoin crimes.

3,171 BTC were stolen from the gambling site Bitcoin. The thieves were patient.

They left the money in their address silently and waited until Bitcoin rose in price.

Finally, from the main address, they started a peeling chain on 15 Mar, 2013, in which

one peel went to Bitcoin-24, and another peel went to Mt. Gox.

(2) The Bitcoinica theft in May 2012 also involved a peeling chain, with peels sent to

known exchanges, BTC-e, CampBX and Bitstamp.

(3) The Bitfloor theft is the most sophisticated amongst the three. The thieves may have

read Ron and Shamir (2013) and followed the fork-merge pattern. After an initial

peeling chain, the small amounts of peels were aggregated, and another peeling chain

ensued. Meiklejohn et al. (2013), however, followed the forks and merges closely and

followed all the later chains through. Their effort allowed them to observe that some

peels were, again, sent to popular addresses, including Mt. Gox, BTC-e and Bitstamp.

Peeling chains, and the close study of them, therefore offer law enforcement another

chance to de-anonymize the “most motivated Bitcoin users,” in the words of Meiklejohn

et al. (2013), namely thieves. Even if only a small portion of the peels flow to exchange

sites, by following those peels closely, we may have a chance to track down the true identity

of the criminals.

5 Conclusion

The information provided by blockchains of cryptocurrencies is immense and diverse. This

information have been used to analyse transaction flows, user behaviors, and the prices

of cryptocurrencies. Blockchain information are represented by two types of networks,

the transaction network and the user network, approximated by the entity network. We

reviewed heuristics for constructing the entity network out of the transaction network, and

discussed how they have been used, improved, and developed over time.
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Finance and economics research based on blockchain information focused on location

identification, fraud detection, and price investigations. These topics made crucial use of

network analytics tailored to the specific blockchain properties. By this comprehensive

overview, we intend to aid research on the use of blockchain information to understand user

behaviours and the corresponding price behaviours of cryptocurrencies.
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