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Abstract

Forecasters are typically not equally interested in all possible realisations of a ran-

dom variable under scrutiny. Financial risk managers, for instance, usually put rela-

tively more weight on regions of extreme losses. In density forecast comparison, it is

common practice to use strictly proper scoring rules to rank a collection of candidate

predictive distributions. When focusing on a region of interest, however, weighted scor-

ing rules obtained via conditioning are no longer strictly proper. We develop a general

procedure for focusing, i.e., localising, scoring rules in a way that preserves their strict

propriety.

A critical insight of our paper is that censoring observations outside the region of

interest, as opposed to conditioning, retains just enough information about the original

distribution to maintain strict propriety. Our procedure provides a myriad of strictly

locally proper scoring rules beyond the censored likelihood score. We obtain a localised

Neyman-Pearson result based on this scoring rule. Using a collection of popular scoring

rules, including the Logarithmic, Spherical, Quadratic and Continuously Ranked Prob-

ability Score (CRPS), Monte Carlo simulations align with the intuition that censoring

is power-enhancing, especially if the number of expected tail observations is small.
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†Erasmus University Rotterdam, Tinbergen Institute
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1 Introduction

Any forecasting application necessitates quantifying the relative performance of differ-

ent forecasting methods. Gneiting and Raftery (2007) motivated the use of strictly

proper scoring rules for this job, which has become the industry standard (Brehmer

and Gneiting, 2020; Patton, 2020). The reason for this is that (strictly) proper scoring

rules assign a score to the actual distribution that is (strictly) larger than the score of

any other predictive distribution. Although strictly proper scoring rules admit point

forecasts (e.g. mean squared error), we concentrate on their use in combination with

predictive distributions and densities. Forecasts in the form of predictive distributions

have gained interest in many different forecasting fields because they give a complete

picture of the stochastic nature of the variable of interest (Dawid, 1984). At the same

time, the specific characteristics of such applications encourage us to zoom in on certain

parts of this picture, i.e. to localise the original scoring rule. In this paper, we present

a general censoring-based procedure for localising scoring rules that preserves strict

propriety. Our framework nests the censored likelihood (csl) scoring rule proposed by

Diks et al. (2011) as a special case. We show that the uniformly most powerful test for

a localised hypothesis test is based on this strictly locally proper scoring rule.

Motivating examples for local scoring rules can be found in different application

areas. In risk management, for example, one is particularly interested in the left tail of

the loss distribution, largely driven by regulatory capital requirements, formulated in

terms of risk measures such as the Value-at-Risk (VaR) and Expected Shortfall (ES).

See e.g. Diks et al. (2014), Kole et al. (2017), Opschoor et al. (2017) and Diks and Fang

(2020) for applications. In macroeconomics, policymakers set – whether regulated by

law or not – targets for central variables like inflation, nominal GDP and unemployment

rates. For such clear targets, it is logical to zoom in on the part of the distribution

around the target value. We refer to Gneiting and Ranjan (2011) and Iacopini et al.

(2022) (and references therein) for interesting examples in macroeconomics.

The literature on focused scoring rules starts with the weighted likelihood score of
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Amisano and Giacomini (2007), which simply multiplies the unweighted logarithmic

scoring rule by a weight function. As independently observed by Diks et al. (2011) and

Gneiting and Ranjan (2011), this procedure produces improper scoring rules because

it favours distributions with more mass assigned to regions with higher weights, inde-

pendent of the underlying distribution. As proper alternatives, Gneiting and Ranjan

(2011) develop the weighted continuously ranked probability scoring (wCRPS) rule,

while Diks et al. (2011) propose the conditional (cl) and csl scoring rule. Holzmann

and Klar (2017a, Theorem 1) observe that the procedure of the cl scoring rule can be

generalised to other scoring rules than the logarithmic scoring rule. They propose a

general procedure for focusing regular scoring rules that applies the regular scoring rule

to a weighted transformation of the original distribution. Their approach differs from

ours by the suggested transformation of the original distribution: a conditional vis-

à-vis censored distribution. The impact of this difference is that our censoring-based

mechanism is the only one guaranteed to deliver strictly locally proper scoring rules.

Interestingly, another route leading to the conditioning mechanism of Holzmann and

Klar (2017a, Theorem 1) is to first generalise the weighted log-likelihood scoring rule

proposed by Amisano and Giacomini (2007) and then apply a transformation coined

properisation by Brehmer and Gneiting (2020, Theorem 1).

Our research also builds on the existing work on strictly proper scoring rules and

their associated divergence measures. Although Gneiting and Raftery (2007) are re-

sponsible for the formal definition of strict propriety, scoring rules satisfying this prop-

erty date back to at least the quadratic scoring (QS) rule proposed by Brier (1950). It

is useful to know that this research area is dichotomous in the sense that much of the

research prior to the rigorous treatment of general probability measures by Gneiting

and Raftery (2007) has been conducted relative to discrete distributions on a finite

outcome space, while more recent work more often follows the generality of Gneiting

and Raftery (2007). For instance, the introduction of the LogS (Good, 1952; Toda,

1963) and spherical scoring (SphS) rule (Roby, 1964; Good, 1971), the initial gener-

alisations of QS and SphS to the PowSα and PsSphSα families, and the axiomatic
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characterisations of the LogS, PowSα and PsSphSα rules provided by Shuford et al.

(1966), Savage (1971), Selten (1998) and Jose (2009), are all presented in a discrete

context. In our analysis, we work with the generalisations of the PowSα and PsSphSα

families advocated by Gneiting and Raftery (2007) and Ovcharov (2018).

Moreover, the expected score differences of many scoring rules are recognised as

well-known divergence measures, which reduce all together to the class of Bregman di-

vergences (Bregman, 1967) when solely considering strictly proper scoring rules (Dawid,

2007; Gneiting and Raftery, 2007; Ovcharov, 2018; Painsky and Wornell, 2019). Con-

sequently, concentrating the score divergences of strictly proper scoring rules excludes

all f -divergences except the Kullback Leibler divergence (Kullback and Leibler, 1951),

which is the unique intersection of the Bregman and f -divergence families. Due to

its favourable properties (Liese and Vajda, 2006) the Kullback Leibler divergence has

become the cornerstone in measuring the discrepancy between densities. For example,

it is the divergence that is minimised in the maximum likelihood framework (Fisher,

1922), which bears optimal properties in the context of testing and estimation. Specif-

ically, the likelihood ratio test is the most powerful test (Neyman and Pearson, 1933)

and maximum likelihood estimators are unbiased estimators reaching the Cramér–Rao

lower bound.

Pivotised sample equivalents of the expected score differences are fundamental in

hypothesis tests about the relative performance of two candidate predictive distribu-

tions. In line with the weighted applications we have in mind, we localise the simple

versus simple hypothesis of the Neyman-Pearson lemma into statements about the un-

derlying distribution on the region of interest. By doing so, the hypothesis about the

underlying distribution becomes a multiple versus multiple hypothesis, equivalent to

the hypothesis studied by Holzmann and Klar (2016). Unlike them, we are still able

to derive the uniformly most powerful test for this hypothesis. The test statistic of

this test is given by a localised likelihood ratio, where the localisation is performed by

censoring, and necessarily not by conditioning.

Power analyses based on localised scoring rules have more frequently been studied
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for the Giacomini and White (2006) test (Diks et al., 2011, 2014; Holzmann and Klar,

2016; Lerch et al., 2017). The null hypothesis of this test entails that the expected

score difference between one candidate to the actual distribution is equivalent to the

expected score difference between the other candidate and the actual distribution.

A great advantage of this test is that all choices underlying the predictor, such as

parameter uncertainty, can be seen as an integral part of the candidate, therefore also

called prediction methods. For a strictly proper scoring rule, the null implies that both

candidates are necessarily misspecified under the null, namely ‘equally misspecified’.

Yet, since which distributions are equally off from both candidates is determined by

the scoring rule, this means that the null set of the GW test is a function of the selected

candidates and the selected scoring rule, complicating comparisons between GW tests

based on different scoring rules. To illustrate this interplay, we include a parametric

example for which the conditional GW null set coincides with the full parameter space,

whereas the censored GW null is a lower-dimensional subspace of the parameter space.

We also compare the power properties of the GW test of the censored scoring rules

with their conditional counterparts and other commonly used localised scoring rules

like the wCRPS of Gneiting and Raftery (2007). In line with Diks et al. (2011), we

find that censoring often leads to higher power.

The remainder of this paper is organised as follows. Section describes the funda-

mental concepts on which the subsequent chapters rely. Chapter 3 defines the gener-

alised censored scoring rule and includes the assumption under which it shown to be

strictly locally proper. This chapter also includes a randomisation procedure, called

Z-Q-randomisation, equivalent to the generalised censored scoring rule. Chapter 4

is devoted to the Localised Neyman-Pearson lemma, for which Chapter 5 includes a

variety of simulation examples. Chapter 6 concludes.
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2 Theoretical framework

2.1 Regular scoring rules

Consider a random variable Y : Ω → Y from a complete probability space (Ω,F ,P) to

the measurable space (Y,G) and denote the actual distribution of Y on (Y,G) by P.

The goal of a forecaster is to choose a distribution from a convex class of candidate

distributions F ∈ P on (Y,G), that minimises the score divergence

DP(P,F;S) :=

!

Y
S(P, ·)dP−

!

Y
S(F, ·)dP,

based on a strictly proper scoring rule S, over P (Gneiting and Raftery, 2007). To

explicitly rule out cases in which the score divergence between two distributions from

P is undefined, e.g. DP(P,F;S) = −∞ + ∞, we adopt the definition of a scoring

rule proposed by Holzmann and Klar (2017a), included as Definition 1. Furthermore,

if there exists a σ-finite measure µ on (Y,G) such that F ≪ µ, ∀F ∈ P, we can

alternatively define the scoring rule S relative to the induced class of µ-densities p by

replacing the distributions by their corresponding µ-densities f ∈ p.

Definition 1 (Scoring rule). A scoring rule is any extended real-valued (R̄ ≡ [−∞,∞])

function S : P× Y → R̄ such that S(F, ·) is measurable with respect to G and quasi-

integrable with respect to all P ∈ P, for all F ∈ P, and for which

!

Y
S(F, ·)dP < ∞ and

!

Y
S(P, ·)dP ∈ R, ∀P,F ∈ P.

Gneiting and Raftery (2007) stress that it is natural to exclusively consider strictly

proper scoring rules to compare distributions from P since score divergences based on

strictly proper scoring rules are P-uniquely minimised by the actual distribution. Here

P-uniquely refers to the fact that any measure P̃ that is P-equivalent to P, that is,

P̃ = P, P-a.s., leads to the same P-expected score as P. Hence, the uniqueness of the

minimiser of the score divergence DP(P,F;S) is defined up to a class of measures that
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is P-equivalent to P. Bearing this in mind, we suppress this technicality in all that

follows. This includes the formal definition of a strictly proper scoring rule adopted

from Gneiting and Raftery (2007), given by Definition 2.

Definition 2 ((Strictly) proper scoring rule). A scoring rule S : P×Y → R̄ is proper

relative to P if DP(P,F;S) ≥ 0, ∀P,F ∈ P, and strictly proper relative to P if,

additionally, DP(P,F;S) = 0 iff P = F, ∀P,F ∈ P.

We are now able to make the relation between Bregman divergences and strictly

proper scoring rules, mentioned in Section 1, more precise: A scoring rule is strictly

proper if and only if its score divergence is a Bregman divergence.

2.2 Weighted scoring rules

In this research, we are particularly interested in weighted scoring rules (see Defini-

tion 3, adopted from Holzmann and Klar (2017a)), allowing forecasters to emphasise

particular regions of the outcome space Y via a weight function w ∈ W, defined as

a map w : Y → [0, 1]. As mentioned in Section 1, emphasising parts of the outcome

space, say the left tail, is reasonable if the objective of a forecaster is to produce reliable

forecasts of a risk measure that is entirely based on the left tail. Indeed, the differences

in scores between two candidates F and G in the right tail are completely irrelevant in

such applications. This example motivates the use of scoring rules that give the same

score to candidate distributions that are equivalent on {w > 0}, that is, the region of

the outcome space on which the weight function is positive. Following Holzmann and

Klar (2017a), we refer to weighted scoring rules satisfying this property, formalised in

Definition 4, as localising weighted scoring rules.

Definition 3 (Weighted scoring rule). A weighted scoring rule is a map S : P× Y ×

W → R̄ such that S(·, ·;w) is a scoring rule for each w ∈ W.

Definition 4 (Localising weighted scoring rule). A weighted scoring rule S : P×Y ×
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W → R̄ is localising if for any P, F ∈ P, w ∈ W,

∀E ∈ G : P({w > 0} ∩ E) = F({w > 0} ∩ E) =⇒ S(P, y;w) = S(F, y;w), ∀y ∈ Y.

Since a localising weighted scoring rule is, by definition, a scoring rule for any given

weight function w ∈ W, it is again natural to look at the subset of localising weighted

scoring rules for which the P-expected score is maximised by the actual distribution P.

In other words, to only consider the class of localising proper weighted scoring rules

defined in Definition 5.

Suppose that a weight function w is not strictly positive on Y. In that case, a

localising proper weighted scoring rule based on this weight function can never be

strictly proper, since any distribution that is different from the actual distribution on

{w = 0} but equivalent to the actual distribution on {w > 0} implies the same expected

score. Consequently, the uniqueness of the maximiser of the P-expected score can only

be achieved on {w > 0}. Similar to Holzmann and Klar (2017a), we call a localising

proper weighted scoring rule that additionally satisfies this local uniqueness property

strictly locally proper (see Definition 5).

Definition 5 ((Strictly) locally proper scoring rule). A weighted scoring rule S :

P× Y × W → R̄ is locally proper relative to(P,W) if it is localising and S(·, ·, w)

is proper for each w ∈ W. Furthermore, it is strictly locally proper relative to (P,W)

if additionally and ∀w ∈ W,

P({w > 0} ∩ E) = F({w > 0} ∩ E), ∀E ∈ G ⇐⇒
!

Y
S(P, y;w)P(dy) =

!

Y
S(F, y;w)P(dy).

We aim to develop a general procedure that maps an unweighted scoring rule S

that is strictly proper relative to P and a class of weight functions W into a class

of scoring rules that is strictly locally proper relative to (P,W). To illustrate how

one could develop such a procedure, Example 1 summarises the procedure leading

to the conditional scoring rule S"
w proposed by Holzmann and Klar (2017a), nesting
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the conditional likelihood score of Diks et al. (2011) as a special case. Unfortunately,

however, this procedure delivers proportionally locally proper instead of strictly locally

proper scoring rules (Holzmann and Klar, 2017a).

Definition 6 (Weighted kernel). The weighted kernel of a distribution F ∈ P is,

∀w ∈ W, defined as

dFw = wdF.

Example 1 (Conditional scoring rule). One way of weighting a regular scoring rule

is to apply the regular scoring rule to a weighted distribution. The conditional scoring

rule proposed by Holzmann and Klar (2017a) follows this recipe, based on the specific

weighted distribution

dF"
w =

1

1− F̄w
dFw, F ∈ P, w ∈ W, (1)

where F̄w :=
"
Y(1−w)dF, Fw is defined in Definition 6 and it is assume that

"
Y wdF >

0, ∀F ∈ P w ∈ W. For the specific choice w = 1A, A ⊆ Y, the weighted distribution

F"
w reduces to the conditional distribution of F on A.

Holzmann and Klar (2017a) use the weighted distribution F"
w to define the condi-

tional scoring rule

S"
w(F, y) := w(y)S(F"

w, y),

where the multiplication with the weight function w ∝ dF!
w

dF is needed to arrive at a

localising proper weighted scoring rule relative to (P,W). See Holzmann and Klar

(2017b) for a detailed proof of this result.

From the definition of the weighted distribution F"
w in Equation (1), one can easily

see that a weighted scoring rule based on this transformation is not strictly locally

proper. After all, any distribution F̃ that is proportional to F on {w > 0}, that is,

dF̃ = cdF for some constant c > 0, implies the same weighted distribution F"
w. As a
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consequence, there exists a continuum of distributions different from the true measure

P on {w > 0} (beyond those mentioned above P-.a.s. equivalence class) that leads to the

same scoring rule. For example, this means that we cannot discriminate between the

actual VaR and the VaR based on a measure proportional to P (and hence potentially

largely different from the actual VaR) if we use the conditional scoring rule – score

divergence.

2.3 Commonly used scoring rules

Weighted scoring rules are transformations of regular scoring rules. In applications, we

focus on the Logarithmic scoring rule (LogS), Power family of scoring rules (PowSα),

the PseudoSpherical family of scoring rules (PsSphSα) and the Continuously Ranked

Probability Score (CRPS), all of which are strictly proper. The inclusion of the PowSα

and PsSphSα families, which include the LogS scoring rule as a limiting case for α ↓ 1, is

partly due to the connection with the expected utility maximisation problems described

by Jose et al. (2008). After all, the duality with specific investment problems based on

the one-parameter Hyperbolic Absolute Risk Aversion (HARA) utility function family,

generated by the absolute risk tolerance function τα(x) = β + αx, with β = 1 (see e.g.

Merton (1971, p. 389)), gives α its interpretation as a risk tolerance parameter.

It is also interesting to examine the relation between the scoring rules under con-

sideration and their associated Bregman divergences. For this purpose, recall that the

so-called separable Bregman divergences

Dφ : p(Y,G, µ)2 → R+, Dφ(p, q) =

!

Y
dφ(p(y), q(y))dµ(y), (2)

arise from the subclass of score divergences based on strictly proper scoring rules of

the form

Sφ : p(Y,G, µ)× Y → R, Sφ(p, y) = φ′(p(y))−
!

Y
φ′(p(y))p(y)− φ(p(y))dµ(y).

(3)
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As revealed by their generator functions φ(t) in Table 1, the LogS and PowSα rules are

clearly of this form. Consequently, the score divergences based on these two scoring

rules, being the Kullback Leibler divergence and the L2(Y,G, µ)-distance for α = 2, are

both separable Bregman divergences. Of course, we are not limited to these specific

choices for φ(t). Rather, Eq. (3) can be seen as a generator for many other strictly

proper scoring rules. However, not every Bregman divergence is separable and hence

not every strictly proper scoring rule can be generated by a specific choice for φ(t) in

Eq. (3). For example, there exists no strictly convex function φ(t) for which Eq. (3)

yields the PsSphSα rule (Good, 1971; Gneiting and Raftery, 2007; Jose, 2009).

3 Localising scoring rules by censoring

3.1 Censoring

As illustrated by Example 1, the lacking strictness in the local propriety of the condi-

tional scoring rule is inherent to the definition of the weighted distribution on which

it is built. Inspired by the csl rule of Diks et al. (2011) and the explicit definition of

a censored density by Gatarek et al. (2013), we propose to alternatively consider a

weighted scoring rule that departs from a censored distribution

dF$
w = dFw + F̄wdδ∗, w ∈ W, F ∈ P, (4)

which is defined relative to the extended measurable space (Y∗,G∗), where Y∗ = Y ∪ ∗

and G∗ = σ({G, ∗}), that is, the smallest σ-algebra containing the collection {G, ∗}.

Furthermore, δ∗ denotes the Dirac measure at ∗, i.e. δ∗(E) = 1E(∗).

The censored distribution in Equation (4) generalises the standard notion of cen-

soring on the real line (Bernoulli, 1760; Tobin, 1958) in which values above (or below)

a certain threshold r are known to be unobservable. Indeed, for w(y) = 1y≤r, the cen-

sored distribution is nothing but the distribution of the random variable Y for which

the outcomes above r are made unobserved, that is, replaced by ∗. So, in this specifc
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case, F$
1y≤r

is just the distribution of

Y $
1y≤r

=

%
&&'

&&(

Y, Y ≤ r,

∗, otherwise.

The general case of the censored distribution displayed in (4) also bears a sound inter-

pretation, but this is deferred to Section 3.3.

From a conceptual point of view, this example illustrates that the outcome space is

extended along the censoring process, substituting right tail observations by ∗. Mathe-

matically, however, it is then preferred to also already define the non-focused distribu-

tion F with respect to the extended measurable space in order to have a legitimately

defined change of measure, described by Equation (4). Therefore, we are more formally

considering the change of measure F∗ 4→ F$
w on (Y∗,G∗), where F∗(E) = F(E\{∗}),

if ∗ ∈ E and F∗(E) = F(E), otherwise, ∀E ∈ G∗. Combining both perspectives, we

view the censored measure as a result of two steps. In the first step, the original mea-

sure F on (Y,G) is extended to F∗ on (Y∗,G∗). Relative to the extended measurable

space (Y∗,G∗), we subsequently apply the change of measure given by Equation (4),

with, strictly speaking, F and w replaced by F∗ and w∗, respectively. For the extended

weight function w∗, one can take any value for w∗(∗) since F∗(∗) = 0, ∀F∗ ∈ P∗. To

keep the notation uncluttered, we will not be explicit about the differences between

the extended and non-extended measures and weight function (classes).

A closer look at the definition of the censored distribution in Equation (4) affirms

why a scoring rule based on the censored distribution in Equation (4) intuitively solves

the lack of strictness faced by scoring rules departing from the conditional distribution

in Equation (1). Put simply, the censored distribution F$
w preserves the one-to-one

connection with the original distribution F relative to G by normalising the weighted

kernel Fw through addition rather than division. The relevant consequence of this is

that the censored scoring rule defined in Definition 7, which applies the regular scoring

rule S to the censored distribution F$
w, is strictly locally proper relative to (P,W).
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This is the content of Theorem 1, for which Appendix A.1 details a proof.

Definition 7 (Censored scoring rule). Let S : P$×Y → R̄, P$ ≡ {F$
w,F ∈ P, w ∈ W},

denote a scoring rule. Then, the corresponding censored scoring rule is given by the

map S$ : P× Y ×W → R̄,

S$
w(F, y) = w(y)S(F$

w, y) +
)
1− w(y)

*
S(F$

w, ∗),

where the censored distribution F$
w is given by Equation (4).

Theorem 1. The censored scoring rule S$ in Definition 7 is strictly locally proper

relative to (P,W) if the regular scoring rule S in Definition 7 is strictly proper relative

to P$.

The censored scoring rule in Definition 7 is obtained similarly as the conditional

scoring rule depicted in Example 1, in the sense that both scoring rules apply the

original scoring rule to a focused version of the original distribution. Although the

censored measure is undoubtedly preferred when solely comparing the difference in

proportional and strict local propriety implied by conditional and censored measure,

respectively, this advantage of the censored distribution comes at the price of putting

a restriction on the class of regular scoring rules that can be used for this focusing

method. In particular, Definition 7 requires regular scoring rules S to be well-defined

for distributions of continuous-discrete type, ruling out regular scoring rules like the

CRPS. In Section 3.2, we address this issue by considering a further generalisation of

the censored distribution.

Moreover, if the regular scoring rule does only depend on the distribution F through

y, in which case the scoring rule is called local, the censored scoring rule becomes F-

equivalent to

S$
w(F, y) = w(y)S(Fw, y) +

)
1− w(y)

*
S(F̄w, ∗),

which is a weighted average of the regular score of the weighted kernel and the discrete
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probability F̄w. For the indicator choice w(y) = 1y≤r on Y = R, this further implies

that observations in the left tail receive the original score S(F, y), while observations in

the right tail contribute with the regular score of the coverage probability of the right

tail.

The most celebrated local scoring rule is without a doubt the Logarithmic scoring

rule. Similar to other (non-local) scoring rules like the PsSphSα and PowSα family of

scoring rules, introduced in Section 2.3, this scoring rule is a function of the density.

Evidently, the censored scoring rule in Definition 7 also applies to densities, after

replacing the class of probability measures P by the associated class of µ-densities

p = {f, f = dF
dµ ,F ∈ P}, provided that F ≪ µ, ∀F ∈ P. Likewise, the censored

distribution given by Equation (4) should be replaced by the censored density

f $
w = wf1y ∕=∗ + F̄w1y=∗, w ∈ W, f ∈ p, (5)

which is the (µ+ δ∗)-density of F$
w if F ≪ µ (see Appendix A.3 for a proof).

We conclude this section with some concrete examples of censored scoring rules. In

Section 2.3, we included references for the result that the LogS, PsSphSα and PowSα

family of scoring rules are strictly proper relative to the class of densities fα such that

‖f‖α < ∞, with α = 1 for LogS. As one can easily verify that ‖f $
w‖αα ≤ 1 + ‖f‖αα,

∀w ∈ W, it additionally follows that these families are also strictly proper relative to

f$
α. Hence Theorem 1 applies, from which it follows that their censored counterparts

displayed in Table 2 are strictly locally proper relative to fα. Comparing the censored

and conditioned versions of the rules, we notice that the censored variants have an extra

F̄w-dependent second term, preserving more information of the original distribution.

For the conditional PsSphSα, Table 2 also shows that the normalising constant

1 − F̄w cancels, so that, formulawise, PsSphS"α,w(f, y) = w(y)PsSphSα(fw, y). This

is somewhat alarming, since limα↓1
1

α−1PsSphSα(f, y) = log f(y) by Equation (6) and

w(y)LogS(f, y) is equivalent to the weighted likelihood score proposed by Amisano

and Giacomini (2007), which is improper (Diks et al., 2011). As illustrated by Ap-
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pendix B.2, this is no cause for concern as the aforementioned limit is a simpliciation

of log f(y)
‖f‖1 and ‖fw‖1 = 1 − F̄w. For the conditional rules, the linearity of limits

straightforwardly implies that the limit result in Equation (6) survives conditioning.

Appendix B.2 and B.3 show that the same is true for the censored PowSα and PsSphSα

family, respectively. Consequently,

lim
α↓1

1

α− 1
PsSphSxα,w(f, y) = lim

α↓1

1

α− 1
PowSxα,w(f, y) = LogSx(f, y), ∀x ∈ {∅, ', (},

(6)

where x = ∅ refers to a regular scoring rule (which does not depend on w).

Table 2: Regular, conditional and censored density-based scoring rules

S S(f, y) S"
w(f, y) S$

w(f, y)

LogS log f(y) w(y) log
#

f(y)
1−F̄w

$
w(y) log f(y) +

)
1− w(y)

*
log F̄w

PsSphSα
f(y)α−1

‖f‖α−1
α

w(y)fw(y)α−1

‖fw‖α−1
α

w(y)fw(y)α−1+(1−w(y))F̄α−1
w

(‖fw‖αα+F̄α
w)

α−1
α

PowSα αf(y)α−1 w(y)

+
α
#

fw(y)
1−F̄w

$α−1
w(y)αfw(y)

α−1 +
)
1− w(y)

*
αF̄α−1

w

−(α− 1)‖f‖αα −(α− 1)
,,, fw(y)
1−F̄w

,,,
α

α

-
−(α− 1)

)
‖fw‖αα + F̄α

w

*

Regular, conditional (") and censored (#) scoring rules based on the three density-based scoring rules

introduced in Section 2.3. The derivations corresponding with the LogS, PsSphSα and PowSα rules are

deferred to Appendix B.1, B.2 and B.3, respectively.

3.2 Generalised censored scoring rule

Since not every regular scoring rule S is well-defined relative to the censored measure

in Equation (4), the censored scoring rule in Definition 7 puts a restriction on the

class of admitted regular scoring rules S. For instance, the CRPS is not compatible

with the censored distribution in Equation (4) because the CRPS is solely defined for

distributions that are absolutely continuous with respect to the Lebesgue measure λ on

(R,B), where B denotes the Borel σ-algebra on R. One way to alleviate the restriction

on S such that CRPS ∈ S, is to flatten the shape of the distribution outside the
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region of interest such that the censored distribution remains absolutely continuous

with respect to the Lebesgue measure. As will be clear from Theorem 2 below, a valid

alternative to the standard notion of censoring is to ‘store’ the probability F̄w on some

interval on which the weight function is positive somewhere λ-a.e., instead of at ∗.

More precisely, replacing the Dirac distribution δ∗ in Equation (4) by a Unif(rw, rw+

θ), θ > 0, distribution such that λ
)
{w = 0}∩(rw, rw+θ)

*
> 0 does not affect the strict

local propriety of the generalised censored scoring rule in Definition 7 based on this

uniform choice for the nuisance distribution H. It is worth emphasising that the term

‘generalised’ is in place here since Definition 8 reduces to Definition 7 when choosing δ∗

as nuisance distribution. As desired, the class of censored measures P$ = {F$
w,U,F ∈

P, w ∈ Wλ}, where

dF$
w,U = dFw + F̄wdU, dU =

1

θ
1(rw,rw+θ)dλ, (7)

and Wλ = {w ∈ W : λ({w = 0}) > 0} is now such that the CRPS is added to

the class of admitted scoring rules S. It is important to note, however, that the

expansion of S involves a restriction on the class of admitted weight functions from W

to Wλ.This exchange between the restriction on S and W generalises to Assumption 1

of Theorem 2.

According to Theorem 2, for which Appendix A.2 includes a proof, we can choose

any other nuisance distribution than δ∗ and Unif(rw, rw + θ) without losing strict local

propriety, as long as the regular scoring rule remains well-defined and strictly proper

relative to the implied class of censored distributions and the choice of nuisance dis-

tribution is compatible with the class of weight functions under consideration. We

have illustrated the latter condition by pointing out that not all scoring rules are com-

patible with the Dirac choice like not all weight functions can be combined with the

Uniform choice. Furthermore, the intuition behind the interplay between the choice of

the nuisance distribution H and weight function w is that the original distribution can

be inferred from the censored distribution on {w > 0} if H is known. Hence, Assump-
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tion 1 requires the existence of an event E such that H reveals itself. For the sake of

clarity, let us explicitly note that S$ being strictly locally proper relative to a triplet

(P,W,H) means that S$
·,H is strictly locally proper relative to (P,W), ∀H ∈ H.

Definition 8 (Generalised censored scoring rule). Let S : P$ × Y → R̄ denote a

scoring rule. The associated generalised censored scoring rule is given by the map

S$ : P× Y ×W × H→ R̄,

S$
w,H(F, y) = w(y)S(F$

w,H, y) +
)
1− w(y)

* !

Y
S(F$

w,H, q)H(dq), dF$
w,H = dFw + F̄wdH,

where F$
w,H is referred to as the generalised censored distribution of F.

Assumption 1. A weight function w ∈ W and nuisance distribution H ∈ H⊆ P is

such that ∃E ∈ G : Fw(E) = 0 and H(E) > 0, ∀F ∈ P,H ∈ H.

Theorem 2. Suppose that the regular scoring rule S in Definition 8 is strictly proper

relative (P,W). Additionally assume that W and H are such that Assumption 1 is

satisfied. Then, the generalised censored scoring rule S$ in Definition 8 is strictly locally

proper relative to (P,W,H).

For a class of weight functions Wλ and a class of λ-dominated distributions Pλ,

Assumption 1 permits a broad spectrum of nuisance distributions. For example, any

Dirac measure δc, c ∈ R, on (R,B) is allowed, since then Fw(c) = 0, while H(c) =

δc(c) = 1, independent of whether c is an element of {w = 0} or not. Other examples

include all continuous distributions that have (part of their) support on {w = 0}, as

Fw is trivially zero on {w = 0}. The left-hand side panel of Table 3 presents the

generalised censored scoring rules based on a density h satisfying the latter condition.

When comparing the results with the censored scoring rules in Table 3, it is notable that

the obtained LogS$ rule is independent of the choice of h. Due to their dependence

of the α-norm, this invariance result only holds within a further restricted class of

densities for the other two scoring rules, that is, for the normalised class of densities

h̃ = h/‖h‖α. The right-hand side panel of Table 3 lists the results for the specific
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choice h = u, where u is the density of a Unif(rw, rw + θ) distribution introduced

above. Since the α-norm of a Unif(rw, rw + 1) is one for all α, it it is not unforeseen

that the generalised censored scoring rules coincide with the censored scoring rules in

Table 2 if θ = 1. For other values of θ > 0, the parameter θ tunes the influence of the

probability F̄w. In particular, the role of F̄w diminishes for θ < 1, while it intensifies

for θ > 1.

Table 3: Real valued examples of density-based generalised censored scoring rules

S S$
w,u(f, y) S$

w,h(f, y)

LogS w(y) log f(y) +
)
1− w(y)

*
log F̄w w(y) log f(y) +

)
1− w(y)

*
log F̄w

PsSphSα
w(y)fw(y)α−1+

)
1−w(y)

*
F̄α−1
w θ1−α

(‖fw‖αα+F̄α
wθ1−α)

α−1
α

w(y)fw(y)α−1+
)
1−w(y)

*
F̄α−1
w ‖h‖αα

(‖fw‖αα+F̄α
w‖h‖αα)

α−1
α

PowSα w(y)αfw(y)
α−1 +

)
1− w(y)

*
αF̄α−1

w θ1−α w(y)αfw(y)
α−1 +

)
1− w(y)

*
αF̄α−1

w ‖h‖αα
−(α− 1)

)
‖fw‖αα + F̄α

wθ
1−α

*
−(α− 1)

)
‖fw‖αα + F̄α

w‖h‖αα
*

S S$
w,U(F, y) S$

w,H(F, y)

CRPS
" r
−∞

)
Fw(s)− w(y)1(−∞,s](y)

*2
ds

" r
−∞

)
Fw(s)− w(y)1(−∞,s](y)

*2
ds

+ θ
3

)
F̄w − (1− w(y)

*2
+‖H − 1‖22

)
F̄w − (1− w(y)

*2

Generalised censored scoring rules based on the LogS, PsSphSα, PowSα and CRPS regular scoring rules

(see Table 2 for the definitions) for two choices of the nuisance density (distribution) h (H). The norm

‖H − 1‖22 is defined relative to support of H. The left panel uses a uniform distribution on

(r, r + θ) ⊆ {w = 0}, while the right handside panel departs from a density (distribution) h (H) which

support is also a subset {w = 0}. Accordingly, the weight function w ∈ Wθ ⊆ Wλ is in both panels

assumed to be zero on a subset of R with positive length. For the CRPS it is additionally assumed that

{w > 0} = (−∞, r] and {w = 0} = (r,∞). The derivations corresponding with the LogS, PsSphSα, PowSα
and CRPS rules are deferred to Appendix C.1, C.2, C.3 and C.4, respectively. Appendix C.5 additionally

includes a censored CRPS example for the compact indicator weight function w(y) = 1[a,b](y).

Table 3 also includes the generalised censored CRPS implied by Definition 8. Again,

there exists a choice for the nuisance distribution for which the generalised censored

scoring rule is functionally independent of this distribution, e.g. the Uniform choice

with θ = 3. The difference in interpretation between the latter CRPS$w,U3
rule and the

twCRPS rule proposed by Gneiting and Ranjan (2011) is striking (see Table 4 for an

overview of documented localised CRPS rules). Viewing the CRPS as an unweighted

average of Brier probability scores for the probability forecasts F (s) of the events y ≤ s,

the twCRPS is nothing but a weighted average of the same, strictly proper, individual
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Brier scores. In contrast, the CRPS$w,U3
rule applies the transformation implied by the

weight function to the distribution function itself. For the indicator weight function

w(y) = 1(−∞,r] the consequence of the generalised censoring approach is that the

scoring rule has an extra term compared to the twCRPS, which is the additional Brier

score of the discrete probability F̄w of the event y > r. Notably, this additional term

is perfectly in line with the standard notion of censoring, in which we are no longer

interested in the shape of distribution outside the region of interest, while still caring

about the coverage probability of being in the region of interest.

Similarly, for the generality of weight functions introduced in Table 3, we note that

the continuous and discrete component of the censored scoring rule extend naturally

to more general weight functions. In particular, the weighted kernel Fw, which is

now a weighted version of F on {w > 0} rather than just F on {w > 0}, is now being

compared with an indicator function that is weighted accordingly. Recalling that F̄w =
"
(1−w)dF, the generalisation of the Brier score based on the indicator weight function

is also natural. Moreover, how the CRPS$w,U3
rule splits into a continuous and discrete

component is comparable to the censored likelihood score proposed by Diks et al.

(2011), famed due to its favourable power properties. Hence, it is not unreasonable to

conjecture that the censored CRPS also bears preferable power properties relative to

the twCRPS.

Table 4: Localised CRPS variants

Sw Sw(F, y)

CRPS$w,U3

" r
−∞

)
Fw(s)− w(y)1(−∞,s](y)

*2
ds+

)
F̄w − (1− w(y)

*2

twCRPSw
"∞
−∞w(s)

)
F (s)− 1(−∞,s](y)

*2
ds

CRPS"w w(y)
" r
−∞

#
Fw(s)
1−F̄w

− 1(−∞,s](y)
$2

ds

wsCRPSw w(y)
" r
−∞

#
Fw(s)
1−F̄w

− 1(−∞,s](y)
$2

ds+ w(y)F̄ 2
w +

)
1− w(y)

*)
1− F̄w

*2

The CRPS$w,U3
is a special case of Definition 8. For the twCRPSw, CRPS

%
w and wsCRPS%w rules, we refer

to Gneiting and Ranjan (2011) (Holzmann and Klar, 2017a, Theorem 1) and (Holzmann and Klar, 2017a,

Theorem 3), respectively.
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3.3 Z,Q-randomisation

It is also possible to formulate an explicit transformation of the random variable Y that

leads to the censored random variable Y $
w,H in Definition 8. For this transformation,

we introduce – on top of the independent random variable Q with distribution H – the

auxiliary random variable Z|Y = y ∼ BIN(1, w(y)). The specific transformation looks

as follows

Y $
H,w = φw,H(Y, Z,Q) =

%
&&'

&&(

Y, if Z = 1

Q, if Z = 0

.

To keep the notation uncluttered, we use the censored density of Lemma ?? to

discuss this equivalence briefly. Using the auxiliary variable Z, we first note that it

is unchallenging to derive the bivariate density of (Y $
H,w, Z), which is of continuous-

discrete type. We arrive at the following specification

f $
w,h(y, Z = 0) = P(Z = 0)

dH

dµ$
(y) = F̄w

dH

dµ$
(y)

f $
w,h(y, Z = 1) = P(Z = 1|Y = y)

dF

dµ$
(y) = w(y)

dH

dµ$
(y),

with corresponding marginal density

f $
w,h(y) =

.

z

f $
w,h(y, z) = w(y)

dF

dµ$
(y) + F̄w

dH

dµ$
(y),

which indeed coincides with the censored density.

Similarly, the censored scoring rule of Definition 8 can alternatively be written in

terms of the same Z and Q random variables in the following way

S$
h,w(f, y) :=EZ|Y=y,QS([f ]

$
h,w,φw,h(y, Z,Q)),
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since

EZ|Y=y,QS([f ]
$
h,w,φw,h(y, Z,Q)) =EZ|Y=y,Q

#
S(f $

h,w, y)1Z=1 + S(f $
h,w, Q)1Z=0

$
,

=w(y)S(f $
h,w, y) + (1− w(y))EQS(f

$
h,w, Q),

coincides with the density version of Definition 8.

4 Hypothesis testing

4.1 Localised Neyman–Pearson

In anticipation of our favourite applications, we now switch to an explicit time series

context. In particular, consider a stochastic process {Yt : Ω → Y}Tt=1 from a complete

probability space (Ω,F ,P) to a measurable space (YT ,GT ), where YT and GT denote

the product outcome space and σ-algebra of the individual outcome spaces Y and σ-

algebras G, respectively. The process generates the filtration {Ft}Tt=1, in which Ft =

σ(Y1, . . . , Yt) is the information set at time t, satisfying Ft ⊆ Ft+1 ⊆ F , ∀t. We denote

predictive distributions of Yt+1 based on Ft by Ft, predictive distribution functions

by Ft and predictive µt-densities by ft. The existence of the sequence of densities

ft is implied by the existence of a sequence of measures {µt} such that Ft ≪ µt, ∀t.

Furthermore, the regions of interest At ⊆ Y are always assumed to be Ft-measurable.

The aim of this section is to derive a uniformly most powerful (UMP) test for the

following null and alternative hypothesis

H0 : p0t1At = f0t1At , ∀t vs H1 : p1t1At = f1t1At , ∀t. (8)

Although the predictive densities fjt =
Fjt

dµt
, j ∈ {0, 1}, are assumed to be known,

the testing problem remains a multiple versus multiple hypothesis test due to the

lacking specification of the density outside the regions of interest At. Yet, since the

densities pjt must integrate to one on At ∪ Ac
t , the null hypothesis does imply that
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these densities integrate to Fjt(A
c
t) on Ac

t . Therefore, the implied specification on Ac
t

can be summarised as

Fjt(A
c)

Hjt(Ac)
hjt1Ac

t
= Fjt(A

c)[hjt]
"
Ac

t
1Ac

t
, j ∈ {0, 1},

where the unknown densities hjt =
Hjt

dµt
can be seen as infinite dimensional nuisance

parameters.

Explicitising the implied assumption on Ac
t in the hypotheses and phrasing them

in terms of a statement about the whole sample distribution leads to the following

equivalent hypotheses

Hj : pj(y) =

T−1/

t=0

#
fjt(yt+1)1At(yt+1) + Fjt(A

c)[hjt]
"
Ac

t
(yt+1)1Ac

t
(yt+1)

$
, j ∈ {0, 1}.

Since the densities fjt are fixed, and the densities hjt are unrestricted under both

hypothesis, the class of densities satisfying hypothesis Hj can alternatively be written

as

pj =

0
T−1/

t=0

#
fj(yt+1)1At(yt+1) + Fjt(A

c)[hjt]
"
Ac

t
(yt+1)1Ac

t
(yt+1)

$
, hj ∈ h

1
, j ∈ {0, 1},

in which h denotes the space of all densities on Ac =
2T−1

t=0 Ac
t .

Let φ : YT → [0, 1] denote a test function determining which values should be

included in the critical region. In terms of the index set of all observations I =

{1, . . . , T}, this space can also be denoted as Y(I) =
2

t∈I Yt. The aim of this section

is to find a uniformly most powerful (UMP) test φ∗ of size α for testing problem (8),

i.e. a solution to the maximisation problem

max
φ∈Φ(α)

Ep1φ, Φ(α) = {φ : sup
p0∈p0

Ep0φ ≤ α}. (9)

As a first step toward the solution, given by Theorem 3, let us fix an h1 ∈ h so that

the distribution under the alternative is completely known. Given the fact that the
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hypotheses are, in the end, silent about the shape of the density on Ac, we conjecture

that a UMP test neglects the information about the shape of the density on Ac. If

T = 2, for example, and we consider the optimal test on A1 ×Ac
2, our intuition is that

an optimal test does not care about the shape of [h2]
"
A2

c , that is, the specific values

[h2]
"
A2

c(y2) for all y2 ∈ A2
c, but just about the total probability of an outcome falling

into Ac
2. In other words, we expect that a solution to problem (9) has integrated out

the dependence on the nuisance densities.

Although it is obvious that marginalising out the still assumed to be fixed density

h1 ∈ h is harmless in terms of power, it is non-trivial that this is an affordable strategy

in terms of size for all h0 ∈ h. Lemma 1 and its proof show that the subclass of tests

disregarding information about the shape of h1 is guaranteed to be size correct. In our

search for the UMP test, Corollary 1 then formalises the idea that we can restrict our

attention to tests of the conjectured kind.

Lemma 1. Consider testing problem (8) and suppose that the outcomes (yt)t∈IA are

in At, and the remaining n − k, with k = |IA|, observations (yt)t∈IAc in Ac
t . For an

arbitrary but fixed density h1 ∈ h, the test

ψh1 : YT → [0, 1], ψh1 =

!

Y(IAc )
φ∗
h1

/

t∈IAc

[h1t]
"
Ac

t
1Ac

t
dµt

where φ∗
h1

denotes a solution to problem (9), is such that ψh1 ∈ Φ(α).

Corollary 1. Consider testing problem (8) and suppose that the outcomes (yt)t∈IA

are in At, and the remaining T − k, with k = |IA|, observations (yt)t∈IAc in Ac
t . Let

Ψ(α) ⊆ Φ(α) denote the class of size α tests on YT that are constant in arguments

varying in Y(IAc). Then,

max
φ∈Φ(α)

Ep1φ = max
ψ∈Ψ(α)

Ep1ψ, ∀h1 ∈ h.

For any fixed h1 ∈ h, the reduced optimisation problem resulting from Corol-

lary 1, simplifies to a simple versus simple hypothesis in terms of the censored mea-
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sures d[Fjt]
$
At

= 1AtdFjt+Fjt(A
c
t)dδ∗, enabling us to formalise a localised version of the

Fundamental Lemma of Neyman and Pearson (1933), included below as Theorem 3.

Theorem 3 (Localised Neyman-Pearson). The UMP test for testing problem (8) is

given by

φ$
A(y) =

%
&&&&&&'

&&&&&&(

1, if λ(y) > c

γ if λ(y) = c

0, if λ(y) < c

λ(y) =
[f1]

$
A(y)

[f0]$A(y)
, [fj ]

$
A(y) =

T−1/

t=0

[fjt]
$
At
(yt+1), j ∈ {0, 1},

where c is the largest constant such that [F0]
$
A

)
λ(y) ≥ c

*
≥ α and [F0]

$
A

)
λ(y) ≤ c

*
≥

1− α, and γ ∈ [0, 1] is such that α = [F0]
$
A

)
λ(y) > c

*
+ γ[F0]

$
A

)
λ(y) = c

*
.

It is worth emphasising that the obtained equivalence between testing problem (8)

and Hj : pj = [fj ]
$
At
, j ∈ {0, 1}, is a priori unobvious, since

pj =
#
fj1A + Fj(A

c)[hj ]
"
Ac1Ac

$
=⇒ pj = [fj ]

$
A,

but not the other way around. Formulated differently,

Hj : [pj ]
$
A = [fj ]

$
A

is a multiple versus multiple hypothesis about pj (for example satisfied if pj = [fj ]
$
A),

but a simple versus simple hypothesis about [pj ]
$
A.

Corollary 2. Another formulation of the UMP test for testing problem (8) is given

by the test defined in Theorem 3, with λ(y) replaced by λ̃(y) =
3T−1

t=0

)
Scsl
At
(f1t, yt+1)−

Scsl
At
(f0t, yt+1)

*
, where Scsl

At
denotes the censored likelihood score (csl) proposed by Diks

et al. (2011).

Proof. The test based on λ̃(y) is equivalent to the UMP test in Theorem 3, since

λ̃(y) =

T−1.

t=0

)
Scsl
At
(f1t, yt+1)− Scsl

At
(f0t, yt+1)

*
=

T−1.

t=0

+
log

#
[f1t]

$
At
(yt+1)

$
− log

#
[f0t]

$
At
(yt+1)

$-
= log λ(y)
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and hence λ(y)
>
=
<
c ⇐⇒ λ̃(y)

>
=
<
c̃, with c̃ = log c.

Example 2. Consider the special case T = 1. For one observation, it is straightforward

to derive a most powerful test on Ac. For any h1 ∈ h, maximisation problem (9)

simplifies to

max
φ∈Φ(α)

Ep1φ(y) = max
φ∈Φ(α)

4
Ef1φA(y) + F1(A

c)E
[h1]

!
Ac

φAc(y)
5

= max
αA≤α

6
max

φA∈ΦA(αA)
{Ef1φA(y)}+ F1(A

c) max
φAc∈ΦAc (α−αA)

4
E
[h1]

!
Ac

φAc(y)
57

= max
αA≤α

6
max

φA∈ΦA(αA)
{Ef1φA(y)}+ F1(A

c)
α− αA

F0(Ac)
1Ac

7
.

After all, rejecting with probability α−αA
F0(Ac) if y ∈ Ac is optimal since this is size correct

and any more complicated test function φAc has lower power. This can be verified as

follows. For all level α− αA tests φAc, i.e. φAc ∈ ΦAc(α− αA), we have that

F1(A
c)E

[h1]
!
Ac

φAc(y) ≤ F1(A
c) sup

h1∈h
{E

[h1]
!
Ac

φAc(y)}

= F1(A
c) sup

h0∈h
{E

[h0]
!
Ac

φAc(y)}

≤ F1(A
c)
α− αA

F0(Ac)
.

Consequently, the test

φ∗
Ac(y) =

α− αA

F0(Ac)
, y ∈ Ac,

is most powerful against any other test φ∗
Ac(y) of size α− αA.

This solution, also documented by Holzmann and Klar (2016), coincides with the

UMP test given by Theorem 3. Indeed, suppose that the size α is such that F1(Ac)
F0(Ac) = c,

i.e. not all of the size is spent on A, then the randomisation probability γ in Theorem 3

is such that

α = αA + γF0

+
λ(y) =

F1(A
c)

F0(Ac)

-
= αA + γF0 (A

c) =⇒ γ =
α− αA

F0(Ac)
.
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Corollary 3. For testing problem (8), the test

φ"
A(y) =

%
&&&&&&'

&&&&&&(

1, if λ"(y) > c

γ if λ"(y) = c

0, if λ"(y) < c

λ"
A(y) =

[f1]
"
A(y)

[f0]
"
A(y)

1A(y), [fj ]
"
A(y) =

T/

t=1

[fjt]
"
At
(yt), j ∈ {0, 1},

where c is the largest constant such that [F0]
$
A

)
λ(y) ≥ c

*
≥ α and [F0]

$
A

)
λ(y) ≤ c

*
≥

1−α, and γ ∈ [0, 1] is such that α = [F0]
$
A

)
λ(y) > c

*
+γ[F0]

$
A

)
λ(y) = c

*
, is not UMP.

4.2 Giacomini and White test: Theoretical Example

Let p be given by the parametric Laplace(θ, µ) family, with density function

p(y; θ, µ) =
1

2θ
e−

1
θ
|y−µ|, θ > 0,

and, for convenience, the additional restriction that µ > r, where r is the upper bound

of the region of interest. In other words, A = (−∞, r] and p= {p(y; θ, µ), (µ, θ) ∈ Ω},

where Ω = Ωµ × Ωθ = (r,∞] × (0,∞). The two candidate densities f and g are also

from the Laplace family with parameter values µf , θf , µg and θg. For the region of

interest, we set r = −2. The null sets based on the cl and csl scoring rule are given by

Ω"
0 =

6
(µ, θ) ∈ Ω : −

+
θ

+
1

θf
− 1

θg

-
+ log

+
θf
θg

--
1

2
e−

1
θ
(µ−r) = 0

7

Ω$
0 =

%
&'

&(
(µ, θ) ∈ Ω : −

8
(θ − r)

+
1

θf
− 1

θg

-
+ log

+
θf
θg

-
+

+
µf

θf
− µg

θg

-

− log

9

:1− 1
2e

− 1
θf

(µf−r)

1− 1
2e

− 1
θg

(µg−r)

;<

= 1

2
e−

1
θ
(µ−r) + log

9

:1− 1
2e

− 1
θf

(µf−r)

1− 1
2e

− 1
θg

(µg−r)

<

= = 0

>
&?

&@
.

Now consider the special case in which θf = θg. Then, Ω"
0 = Ω, meaning that

the GW test based on the conditional rule has no asymptotic power. On the other
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hand, the censored null set remains a lower-dimensional subspace of the parameter

space. The lack of power for the conditional rule is a consequence of the result that

the conditional rule is not strictly locally proper but proportionally locally proper.

More specifically, since the conditional scoring rule is unable to discriminate between

proportional densities, such as the left-tail of the candidate densities for θf = θg,

the statistical distance from any density in the density space to candidate f and g is

equivalent.
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5 Simulation study

5.1 Laplace

Figure 1: Rejection rates c = 20 for θf = 1 and θg = 1.1
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Figure 2: Rejection rates c = 20 for θf = 1 and θg = 1.1
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Figure 3: Rejection rates c = 40 for θf = 1 and θg = 1.1
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Figure 4: Rejection rates c = 40 for θf = 1 and θg = 1.1
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5.2 Normal-Student-t(5)

Figure 5: Rejection rates c = 20
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Figure 5: Rejection rates c = 20
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Figure 6: Rejection rates c = 5
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Figure 7: Rejection rates c = 5
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6 Conclusion

In many applications, forecasters are not equally interested in all possible outcomes of

the random variable of interest. For such cases, we have motivated the use of censoring

as focusing device. In particular, we have shown that focusing scoring rules by applying

them to censored distributions leads to strictly locally proper scoring rules. To the best

of our knowledge, we are first in deriving a transformation of the original scoring rule

that preserves strict propriety.

Our method is very flexible with regard to the choice of the original scoring rule

and weight function. For specific choices, the generalised censored scoring rule delivers

intuitively sound scoring rules that can easily be implemented by practitioners. When

applied to the logarithmic scoring rule, our focusing procedure implies the well-known

censored likelihood score.

The censored likelihood score also appears in a second important result of this

paper. In particular, we have shown that the UMP test for a localised version of

the standard simple versus simple Neyman Pearson testing problem is based on the

censored likelihood ratio. Furthermore, the results of our Monte Carlo study suggest

that our theoretical findings spill over to the finite sample properties of other fore-

cast evaluation tests. In our experiments, striking differences in power always favour

censoring.
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Appendix

A Proofs

A.1 Proof Theorem 1

As discussed in Section 3.1, the censoring process can be viewed as the result of two

intermeditate steps in which the first step extends the definitions of the orginal mea-

sures and weight functions to the extended measurable space, i.e. mapping (P,Y,W)

to (P∗,Y∗,W∗). Here, we consider all outcomes y, events E, measures F and weight

w functions with respect to the extended classes Y∗,G∗,P∗ and W∗. Correspondingly,

we will show that S$ is strictly locally proper relative to (P∗,W∗). According to Defi-

nition 5, we then need to prove a list of three things: (i) S$ must be localising relative

to W∗, (ii) S$ must be proper relative to P∗, ∀w ∈ W∗, and (iii) the if and only if

statement in Definition 5.

We start by proving an if and only if statement that will serve as a building block

for assertions (i) and (iii). In particular, it will be helpful to know that

F$
w(E) = G$

w(E), ∀E ∈ G∗ ⇐⇒ F(E ∩ {w > 0}) = G(E ∩ {w > 0}), ∀E ∈ G∗,

(A.1)

for which we prove both implications in isolation.

“ =⇒ ” Suppose that F$
w(E) = G$

w(E), ∀E ∈ G∗. Then, since ∗ ∈ G∗ and F∗
w(∗) =

0, ∀w ∈ W∗,F ∈ P∗, it immediately follows that F̄w = Ḡw. This in turn implies that

F∗
w(E) = G∗

w(E), ∀E ∈ G∗, which holds if and only if F(E ∩ {w > 0}) = G(E ∩ {w >

0}), ∀E ∈ G∗.

“ ⇐= ” Suppose that F(E ∩ {w > 0}) = G(E ∩ {w > 0}), ∀E ∈ G∗. Then, using

the same if and only if relation as in the proof of the other direction, we also have that

F∗
w(E) = G∗

w(E), ∀E ∈ G∗, and hence in particular 1−F̄w = F∗
w(Y) = G∗

w(Y) = 1−Ḡw.

But then, F$
w(E) = G$

w(E), ∀E ∈ G∗.

We can now easily proof the three listed items:
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(i) S$ is localising relative to W∗, as F(E ∩ {w > 0}) = G(E ∩ {w > 0}), ∀E ∈ G∗

implies, by Equation (A.1), that F$
w(E) = G$

w(E), ∀E ∈ G∗, whence it follows that

S$
w(F, y) = S$

w(G, y).

(ii) To show that S$
w is proper for all w ∈ W∗, we start by fixing an arbitrary

w ∈ W∗. Since S is proper relative to P$ ⊇ P$
w, the following inequality holds

!

Y
S(P$

w, y)P
$
w(dy) ≥

!

Y
S(F$

w, y)P
$
w(dy), ∀P$

w,F
$
w ∈ P$

w. (A.2)

By definition of the class P$
w ≡ {[F]$w,F ∈ P} and the fact that F(∗) = 0, ∀F ∈ P∗,

this is equivalent to

!

Y
S([P]$w, y)[P]

$
w(dy) ≥

!

Y
S([F]$w, y)[P]

$
w(dy), ∀P,F∗ ∈ P∗. (A.3)

For these integrals, verify that

!

Y∗
S(F$

w, y)P
$
w(dy) =

!

Y∗
S(F$

w, y)
)
Pw(dy) + P̄wδ∗(dy)

*
,

=

!

Y∗
S(F$

w, y)Pw(dy) +

!

Y∗
S(F$

w, y)P̄wδ∗(dy),

=

!

Y∗
w(y)S(F$

w, y)P(dy) +

!

Y∗
S(F$

w, q)

!

Y∗

)
1− w(y)

*
P(dy)δ∗(dq),

=

!

Y∗

#
w(y)S(F$

w, y) +
)
1− w(y)

* !

Y∗
S(F$

w, q)δ∗(dq)
$
P(dy),

=

!

Y∗

#
w(y)S(F$

w, y) +
)
1− w(y)

*
S(F$

w, ∗)
$
P(dy),

=

!

Y∗
S$
w(F, y)P(dy),

∀P,F ∈ P∗. Consequently, Equation (A.2) is equivalent to

!

Y∗
S$
w(P, y)P(dy) ≥

!

Y∗
S$
w(F, y)P(dy), ∀P,F ∈ P∗, (A.4)

and hence S$
w is proper relative to P∗ by Definition 2.
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(iii) Since S is also strictly proper relative to P$ ⊇ P$
w, we find that, ∀w ∈ W∗,

!

Y∗
S(P$

w, y)P
$
w(dy) =

!

Y∗
S(F$

w, y)P
$
w(dy) ⇐⇒ P$

w = F$
w,

and thus, by Equation (A.1),

!

Y∗
S(P$

w, y)P
$
w(dy) =

!

Y∗
S(F$

w, y)P
$
w(dy) ⇐⇒ P(E ∩ {w > 0}) = F(E ∩ {w > 0}),

∀E ∈ G∗, and hence, by the equality
"
Y∗ S(F

$
w, y)P

$
w(dy) =

"
Y∗ S

$
w(F, y)P(dy) derived

above, also that

!

Y∗
S$
w(P, y)P(dy) =

!

Y
S$
w(F, y)P(dy) ⇐⇒ P(E ∩ {w > 0}) = F(E ∩ {w > 0}),

∀E ∈ G∗, which is the desired if and only if statement of Definition 5.

But then, as we have verified each of the listed conditions (i) to (iii), we have shown

that S$
w(P, y) is strictly locally proper relative to (P∗,W∗).

A.2 Proof Theorem 2

For clarity of exposition, we first prove the main ingredients of the proof via two isolated

lemmas and a corollary.

Lemma 2. Consider the censored scoring rule defined in Definition 8. ∀w ∈ W and

H ∈ H, the following identity holds
"
Y S$

w,H(F, y)P(dy) =
"
Y S(F$

w,H, y)P
$
w,H(dy).
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Proof.

!

Y
S$
w,H(F, y)P(dy) =

!

Y

#
w(y)S(F$

w,H, y) +
)
1− w(y)

* !

Y
S(F$

w,H, q)H(dq)
$
P(dy),

=

!

Y
w(y)S(F$

w,H, y)P(dy) +

!

Y
S(F$

w,H, q)

!

Y

)
1− w(y)

*
P(dy)H(dq),

=

!

Y
S(F$

w,H, y)Pw(dy) +

!

Y
S(F$

w,H, y)P̄wH(dy),

=

!

Y
S(F$

w,H, y)
)
Pw(dy) + P̄wH(dy)

*
,

=

!

Y
S(F$

w,H, y)P
$
w,H(dy).

Lemma 3. Consider two distributions P and F on the same measurable space (Y,G).

On the same space, let their censored counterparts P$
w,H and F$

w,H be given by Defini-

tion 8. Then,

F$
w,H(E) = G$

w,H(E), ∀E ∈ G ⇐⇒ F(E ∩ {w > 0}) = G(E ∩ {w > 0}), ∀E ∈ G.

Proof. “ =⇒ ” We start with the most challenging direction, for which Assumption 1

is of critical importance. First, note that

F$
w,H(E) = G$

w,H(E), ∀E ∈ G

=⇒ F$
w,H(E ∩ {w = c}) = G$

w,H(E ∩ {w = c}), ∀E ∈ G

=⇒
!

Y
(1− w)dFH(E ∩ {w = c}) =

!

Y
(1− w)dGH(E ∩ {w = c}), ∀E ∈ G

=⇒
!

Y
(1− w)dFH({w = c}) =

!

Y
(1− w)dGH({w = c}),

=⇒
!

Y
(1− w)dF =

!

Y
(1− w)dG,

where c denotes a constant such that Assumption 1 is satisfied. Then, exploit this
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equality to conclude

F$
w,H(E) = G$

w,H(E), ∀E ∈ G

=⇒
!

Y
w(y)1y∈EF(dy) =

!

Y
w(y)1y∈EG(dy), ∀E ∈ G

=⇒ F(E ∩ {w > 0}) = G(E ∩ {w > 0}), ∀E ∈ G.

“ ⇐= ” The other direction is somewhat trivial. Indeed,

F(E ∩ {w > 0}) = G(E ∩ {w > 0}), ∀E ∈ G

=⇒
!

Y
w(y)1y∈EF(dy) =

!

Y
w(y)1y∈EG(dy), ∀E ∈ G

=⇒
!

Y
(1− w)dF =

!

Y
(1− w)dG,

and the two implied results jointly imply F$
w,H(E) = G$

w,H(E), ∀E ∈ G, ∀H ∈ H.

Corollary 4. The censored scoring rule defined in Definition 8 is localising ∀H ∈ H.

Proof. Suppose that F(E ∩ {w > 0}) = G(E ∩ {w > 0}), ∀E ∈ G. Then, by Lemma 3,

F$
w,H(E) = G$

w,H(E), ∀E ∈ G, whence it follows that S$
w,H(P, y) = S$

w,H(F, y), ∀y ∈

Y.

We now turn to the main body of the proof. The definition of a strictly locally

proper scoring rule (Definition 5) and the definitions on which this definition is built,

that is, the definition of a locally proper scoring rule (Definition 5) and a localising

weighted scoring rule (Definition 4), reveal that we need to prove a list of three things

∀H ∈ H: (i) S$
w,H(P, y) must be localising relative to W, (ii) S$

w,H(P, y) must be proper

relative to P, ∀w ∈ W and (iii) the if and only if statement in Definition 5. We prove

them one by one.

(i) S$
w,H(P, y) is localising relative to W, ∀H ∈ H, by Corollary 4.

(ii) Fix an arbitrary w ∈ W and H ∈ H. Since P$
w,H ⊆ P$, S is strictly proper
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relative to P$
w,H, i.e.

!

Y
S(P$

w,H, y)P
$
w,H(dy) ≥

!

Y
S(F$

w,H, y)P
$
w,H(dy), ∀P$

w,H,F
$
w,H ∈ P$

w,H, (A.5)

which is by definition of the class P$
w,H ≡ {[P]$w,H,P ∈ P} equivalent to

!

Y
S([P]$w,H, y)[P]

$
w,H(dy) ≥

!

Y
S([F]$w,H, y)[P]

$
w,H(dy), ∀P,F ∈ P, (A.6)

and hence, by Lemma 2, also

!

Y
S$
w,H(P, y)P(dy) ≥

!

Y
S$
w,H(F, y)P(dy), ∀P,F ∈ P. (A.7)

Therefore, S$
w,H(P, y) is proper relative to P by Definition 2.

(iii) Since S is strictly proper relative to P$ and hence P$
w,H, it also follows that,

∀w ∈ W and H ∈ H,

!

Y
S(P$

w,H, y)P
$
w,H(dy) =

!

Y
S(F$

w,H, y)P
$
w,H(dy) ⇐⇒ P$

w,H = F$
w,H,

and thus, by Lemma 3,

!

Y
S(P$

w,H, y)P
$
w(dy) =

!

Y
S(F$

w,H, y)P
$
w,H(dy) ⇐⇒ P(E ∩ {w > 0}) = F(E ∩ {w > 0}),

∀E ∈ G, and hence, by Lemma 2, also

!

Y
S$
w,H(P, y)P(dy) =

!

Y
S$
w,H(F, y)P(dy) ⇐⇒ P(E ∩ {w > 0}) = F(E ∩ {w > 0}),

which is the desired if and only if statement of Definition 5.

But then, as we have verified each of the listed conditions (i) to (iii), we have shown

that S$
w,H(P, y) is strictly locally proper relative to (P,W), ∀H ∈ H.
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A.3 Proof censored density in Equation (5)

We defined the measures µ and F to the extended measurable space (Y∗,G∗) in the

exact same way as we proposed to do in Section 3.1, that is, µ∗(E) = µ(E\{∗}), if

∗ ∈ E and µ∗(E) = µ(E), otherwise, ∀E ∈ G∗. Again, we drop the subsript ∗ in the

notation of the extended measures, while still considering all measures with respect

to the extended measurable space (Y∗,G∗), equivalent to the proof of Theorem 1 in

Appendix A.1.

Since (µ+δ∗)(E) = 0 implies that both µ(E) = 0 and δ∗(E) = 0, ∀E ∈ G∗, we have

that both µ ≪ µ+ δ∗ and δ∗ ≪ µ+ δ∗. As a consequence,

f $
w,h :=

dF$
w

d(µ+ δ∗)
= w

dF

d(µ+ δ∗)
+ F̄w

dδ∗
d(µ+ δ∗)

is the censored (µ+ δ∗)-density of F$
w.

We can simplify this density as follows. Understanding that

dF

d(µ+ δ∗)
=

dF

dµ

dµ

d(µ+ δ∗)
,

we recall from the Radon-Nikodym theorem that dµ
d(µ+δ∗)

is the solution of

!

Y
1Edµ =

!

Y
1E

dµ

d(µ+ δ∗)
d(µ+ δ∗) =

!

Y
1E

dµ

d(µ+ δ∗)
dµ+

!

Y
1E

dµ

d(µ+ δ∗)
dδ∗.

By the same theorem, the solution of this equation is guaranteed to exist uniquely.

A glance at this equation reveals that a reasonable candidate is 1 µ-a.e. and 0 δ∗-

a.s. We conclude that dµ
d(µ+δ∗)

= 1Y\{∗} is the unique solution for the Radon-Nikodym

derivative. By the same token, we conclude from

!

Y
1Edδ∗ =

!

Y
1E

dδ∗
d(µ+ δ∗)

d(µ+ δ∗) =

!

Y
1E

dδ∗
d(µ+ δ∗)

dµ+

!

Y
1E

dδ∗
d(µ+ δ∗)

dδ∗.

that a reasonable candidate for dδ∗
d(µ+δ∗)

is 0 µ-a.e. and 1 δ∗-a.s. More specifically, we

deduce that dδ∗
d(µ+δ∗)

= 1∗ is the unique solution for the Radon-Nikodym derivative.
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Put together, we arrive at

f $
w,h(y) = w(y)

dF

dµ
(y)1Y\{∗}(y) + F̄w1∗(y) = w(y)f(y)1y ∕=c + F̄w1y=c, y ∈ Y,

where f denotes the µ-density of F.

A.4 Proof Lemma 1

Due to the integral over Y(IAc), any test ψh1 is constant in arguments varying in

Y(IAc). We can use this observation to simplify the size of a test ψh1 . In particular,

∀h1 ∈ h, we have that

sup
p0∈p0

Ep0ψh1 =

9

:
/

t∈IAc

F0(A
c
t)

<

= sup
h0∈h

!

YT

ψh1

/

t∈IA

f0t1At

/

t∈IAc

[h0t]
"
Ac

t
1Ac

t
dµt

=

9

:
/

t∈IAc

F0(A
c
t)

<

=
!

Y(IA)
ψh1

/

t∈IA

f0t1Atdµt

=

9

:
/

t∈IAc

F0(A
c
t)

<

=
!

YT

φ∗
h1

/

t∈IAc

[h1t]
"
Ac

t
1Ac

t
dµt

/

t∈IA

f0t1Atdµt

≤

9

:
/

t∈IAc

F0(A
c
t)

<

= sup
h0∈h

!

YT

φ∗
h1

/

t∈IAc

[h0t]
"
Ac

t
1Ac

t
dµt

/

t∈IA

f0t1Atdµt

= sup
p0∈p0

Ep0φ
∗
h1

≤ α,

since φ∗
h1

∈ Φ(α). Hence, ψh1 ∈ Φ(α).

A.5 Proof Corollary 1

Fix an arbitrary h1 ∈ h. Since Ψ(α) ⊆ Φ(α), we trivially have that maxφ∈Φ(α) Ep1φ ≥

maxψ∈Ψ(α) Ep1ψ. Now suppose that maxφ∈Φ(α) Ep1φ < maxψ∈Ψ(α) Ep1ψ. Then, we can

always define the test ψ̃ =
"
Y(IAc ) φ

∗2
t∈IAc

[h1t]
"
Ac

t
1Ac

t
dµt, with φ∗ ∈ argmaxφ∈Φ(α) Ep1φ,

satisfying Ep1φ
∗ = Ep1ψ̃. But, by Lemma 1, ψ̃ ∈ Ψ(α), in which case maxφ∈Φ(α) Ep1φ =

maxψ∈Ψ(α) Ep1ψ̃, contradicting the assumed strict inequality.
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A.6 Proof Theorem 3

For any fixed h1 ∈ h, the most powerful test of size α is a solution to the following

restricted maximisation problem

max
φ∈Φ(α)

Ep1φ = max
α∈∆T̄ (α)

T.

k=0

(Tk).

s=1

max
φk,s∈Φ(αk,s)

Ep1 (φk,s|yt ∈ At, ∀i ∈ IA(k, s) ∧ yt ∈ Ac
t , ∀i ∈ IAc(k, s))

= max
α∈∆T̄ (α)

T.

k=0

(Tk).

s=1

max
φk,s∈Ψ(αk,s)

Ep1 (φk,s|yt ∈ At, ∀i ∈ IA(k, s) ∧ yt ∈ Ac
t , ∀i ∈ IAc(k, s))

= max
α∈∆T̄ (α)

T.

k=0

(Tk).

s=1

max
φk,s∈Ψ(αk,s)

9

:
/

t∈IAc

F1(A
c
t)

<

=
!

Y(IA)
φk,s

/

t∈IA

f1t1Atdµt

= max
α∈∆T̄ (α)

T.

k=0

(Tk).

s=1

max
φk,s∈Ψ(αk,s)

!

YT

φk,s

T−1/

t=0

d[Ft]
$
At

= max
α∈∆T̄ (α)

T.

k=0

(Tk).

s=1

max
φk,s∈Φ(αk,s)

!

YT

φk,s

T−1/

t=0

d[Ft]
$
At
,

where T̄ =
3T

k=0

)
T
k

*
and ∆T̄ (α0) = {α0 ∈ [0,α0]

T̄ : ι′
T̄
α0 = α0}, with ιT̄ denoting

column vector of ones of length T̄ . The first equality exploits that the test function

can be decomposed into test functions operating on a single part of the partitioning

of the outcome space YT , in which case the maximisation problem can be split into

finding an optimal test on each of the partitioned parts conditional on the amount of

size spent on each part and the optimal distribution of size over the partition of the

outcome space.

The second equality holds by Corollary 1, the third equality uses that the optimal

test is constant in arguments varying in Ac, the fourth equality holds by definition of

the censored measure and the fifth equality uses that all tests that are non-constant in

arguments varying in Ac map under the censored measure onto tests that are constant

in arguments varying in Ac.

Finally, the result follows by observing that the final maximisation problem is equiv-

alent to finding the optimal test φ$
A for the testing problem Hj : pj =

2T−1
t=0 [fj ]

$
At
,

j ∈ {0, 1}, for which φ$
A is the UMP test by the Fundamental Lemma of Neyman and
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Pearson (1933). By the equivalence, φ$
A is, for any h1 ∈ h, also the most powerful test

for testing problem (8). But, since the test φ$ is independent of h1, it is the UMP test

for testing problem (8).

A.7 Proof Corollary 3

We show that φ"
A is not UMP by a specific counterexample in which the power of φ"

A is

strictly smaller than the power of φ$
A. In particular, suppose that T = 1 and consider

two densities f0 and f1 that are different on A = [r,∞), for some constant r > 0.

Furthermore, assume that

! ∞

{y:λ(y)>r}
F0(dy) > α, λ(y) =

f1(y)

f0(y)
. (B.1)

For T = 1, the likelihood ratios of the conditional and censored test simplify to

λ"
A(y) =

[f1]
"
A(y)

[f0]
"
A(y)

=

f1(y)
F1(A)

f0(y)
F0(A)

1A(y) =
F0(A

c)

F1(Ac)

f1(y)

f0(y)
1A(y)

λ$
A(y) =

[f1]
$
A(y)

[f0]$A(y)
=

f1(y)

f0(y)
1A(y) +

F1(A
c)

F0(Ac)
1Ac(y).

Due to restriction (B.1), the corresponding critical regions C" =
A
c",∞

*
and C$ =

A
c$,∞

*
are both contained in A. [Hence, an example in which ' has higher power

than (, would not only be a counterexample to Theorem 3 but also to the fundamental

lemma of Neyman and Pearson (1933).]

There exist many examples for which the power of the censored test is strictly

larger than the power of the conditional test. For instance, suppose that y ∼ Exp(θj),

j ∈ {0, 1}, with θ0 > θ1. Then, the critical regions follow from the equation

α =

! ∞

{y:λ(y)>c∗}
θ0e

−θ0ydy =

! ∞

{y:a∗
"

θ1
θ0

#
e−(θ1−θ0)y>c∗}

θ0e
−θ0ydy = 1− F0

+
1

θ0 − θ1
log

+
θ0
θ1

-
c∗

a∗

-
,
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where a" = 1−F0(r)
1−F1(r)

= e−(θ0−θ1)r and a$ = 1. Isolating c∗, gives

c∗ = ba∗, b =
θ0
θ1

e(θ0−θ1)F
−1
0 (1−α) > 0.

Now, the power of the conditional test is only weakly larger than the power of the

censored test, if

! ∞

{y:λ(y)>c!}
θ1e

−θ1ydy ≥
! ∞

{y:λ(y)>c$}
θ1e

−θ1ydy ⇐⇒ c" ≥ c$ ⇐⇒ (θ0 − θ1)r ≤ 0.

But then, as θ0 > θ1 and r > 0, it follows that the power of the conditional test is always

strictly smaller than the power of the censored test. Consequently, the conditional test

φ"
A is not UMP.

B Examples Table 2

B.1 LogS

LogS"w(f, y) = w(y) log

+
w(y)f(y)

1− F̄w

-

eqv.
= w(y) log

+
f(y)

1− F̄w

-

= Scl
w(f, y),

LogS$w(f, y) = w(y) log
)
w(y)f(y)1y ∕=∗ + F̄w1y=∗

*
+ (1− w(y)

*
log F̄w

eqv.
= w(y) log

)
f(y)1y ∕=∗ + F̄w1y=∗

*
+ (1− w(y)

*
log F̄w

µ-a.e.
= w(y) log f(y) + (1− w(y)

*
log F̄w

= Scsl
w (f, y).
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B.2 PsSphSα

We start by showing the limit. Rescaling the PsSphSα family by a factor 1
α−1 , we

obtain

lim
α↓1

1

α− 1

+
f(y)

‖f‖α

-α−1

= lim
α↓1

(α− 1)
#

f(y)
‖f‖α

$α−1

(α− 1)2

= lim
α↓1

#
f(y)
‖f‖α

$α−1
+ (α− 1)

+
log

#
f(y)
‖f‖α

$
+ (α− 1)

#
f(y)
‖f‖α

$−1
∂
∂α

f(y)
‖f‖α

-#
f(y)
‖f‖α

$α−1

2(α− 1)

=
1

2
lim
α↓1

1

α− 1

+
f(y)

‖f‖α

-α−1

+
1

2
lim
α↓1

log

+
f(y)

‖f‖α

-+
f(y)

‖f‖α

-α−1

+
1

2
lim
α↓1

(α− 1)

+
f(y)

‖f‖α

-α−2 ∂

∂α

f(y)

‖f‖α
,

and hence

lim
α↓1

1

α− 1

+
f(y)

‖f‖α

-α−1

= log f(y), (B.2)

since ‖f‖1 = 1. It might be helpful to note that the second equality in the first display

follows from L’Hôpital’s rule combined with the following derivative

∂

∂α

+
f(y)

‖f‖α

-α−1

= log

8+
f(y)

‖f‖α

-
+ (α− 1)

+
f(y)

‖f‖α

-−1 ∂

∂α

f(y)

‖f‖α

;+
f(y)

‖f‖α

-α−1

.

For the conditional PsSphSα family, we find

PsSphS"α,w(f, y) = w(y)

#
fw(y)
1−F̄w

$α−1

#"
Y

#
fw

1−F̄w

$α
dµ

$α−1
α

= w(y)
fw(y)

α−1

‖fw‖α−1
α

= w(y)

+
fw(y)

α

‖fw‖αα

-α−1
α

By the close similarity with Equation (B.2), it is uncomplicated to obtain the following
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limit

lim
α↓1

1

α− 1
PsSphS"α,w(f, y) = w(y) lim

α↓1

1

α− 1

+
fw(y)

‖fw‖α

-α−1

= w(y) log

+
fw(y)

‖fw‖1

-

= w(y) log f "
w(y)

= LogS"w(f, y),

since ‖fw‖1 =
"
Y wfdµ = 1 − F̄w. Clearly, this result also follows directly from the

linearity of limits, as

lim
α↓1

1

α− 1
PsSphS"α(f, y) = w(y) lim

α↓1

1

α− 1
PsSphSα(f

"
w, y) = w(y) log f "

w(y) = LogS"w(f, y).

(B.3)

Moreover, for the censored PsSphSα family, it follows that

PsSphS$w(f, y) =
w(y)

)
fw(y)1y ∕=∗ + F̄w1y=∗

*α−1
+

)
1− w(y)

*
F̄α−1
w

#"
Y
)
fw(y)1y ∕=∗ + F̄w1y=∗

*α
(µ+ δ∗)(dy)

$α−1
α

=
w(y)

)
fw(y)

α−11y ∕=∗ + F̄α−1
w 1y=∗

*
+

)
1− w(y)

*
F̄α−1
w

#"
Y
)
fw(y)

*α
dy + F̄α

w

$α−1
α

µ-a.e.
=

w(y)fw(y)
α−1 +

)
1− w(y)

*
F̄α−1
w

)
‖fw(y)‖αα + F̄α

w

*α−1
α

.

For the limit of α ↓ 1, we cannot directly apply Equation (B.2) as we did for the
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conditional case. Nevertheless, we obtain a similarly satisfying result, namely

lim
α↓1

1

α− 1
PsSphS$w(f, y) = w(y) lim

α↓1

1

α− 1

9

: fw(y)
)
‖fw‖αα + F̄α

w

* 1
α

<

=
α−1

+
)
1− w(y)

*
lim
α↓1

1

α− 1

9

: F̄w
)
‖fw‖αα + F̄α

w

* 1
α

<

=
α−1

= w(y)

9

B: lim
α↓1

log

9

: fw(y)
)
‖fw‖αα + F̄α

w

* 1
α

<

=

9

: fw(y)
)
‖fw‖αα + F̄α

w

* 1
α

<

=
α−1

+ lim
α↓1

(α− 1)

9

: fw(y)
)
‖fw‖αα + F̄α

w

* 1
α

<

=
α−2

∂

∂α

fw(y)
)
‖fw‖αα + F̄α

w

* 1
α

<

C=

+
)
1− w(y)

*
9

B: lim
α↓1

log

9

: F̄w
)
‖fw‖αα + F̄α

w

* 1
α

<

=

9

: F̄w
)
‖fw‖αα + F̄α

w

* 1
α

<

=
α−1

+ lim
α↓1

(α− 1)

9

: F̄w
)
‖fw‖αα + F̄α

w

* 1
α

<

=
α−2

∂

∂α

F̄w
)
‖fw‖αα + F̄α

w

* 1
α

<

C=

= w(y) log fw(y) +
)
1− w(y)

*
log F̄w

= LogS$w(f, y),

where we have used that ‖fw‖1 + F̄w = 1− F̄w + F̄w = 1.

B.3 PowSα

We start by verifying the limit in Equation (6) for the non-focused family. Specifically,

lim
α↓1

1

α− 1
PowSα = lim

α↓1

1

α− 1

)
αf(y)α−1 − (α− 1)‖f‖αα

*

= lim
α↓1

(α− 1)αf(y)α−1

(α− 1)2
− 1

= lim
α↓1

αf(y)α−1 + (α− 1)f(y)α−1
)
1 + α log f(y)

*

2(α− 1)
− 1

=
1

2

+
lim
α↓1

1

α− 1
αf(y)α−1 − 1

-
+

1

2

+
lim
α↓1

f(y)α−1
)
1 + α log f(y)

*
− 1

-
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and hence

lim
α↓1

1

α− 1
PowSα(f, y) = log f(y).

Furthermore, the conditional version of the PowSα family displayed in Table 2 is noth-

ing but a direct application of the conditioning procedure introduced in Example 1.

For the limit of the PowS"α,w, we recall Equation (B.3) and immediately conclude that

limα↓1
1

α−1PowS
"
α,w(f, y) = LogS"w(f, y).

Turning to the censored focusing method, we recall from the analysis in Appendix B.2

that ‖f $
w‖αα = ‖fw(y)‖αα + F̄α

w . Using this result, we obtain

PowS$α,w(f, y) = w(y)α
)
fw(y)1y ∕=∗ + F̄w1y=c

*α−1
+
)
1− w(y)

*
αF̄α−1

w − (α− 1)‖f $
w‖αα

µ-a.e.
= w(y)αfw(y)

α−1 +
)
1− w(y)

*
αF̄α−1

w − (α− 1)
)
‖fw‖αα + F̄α

w

*
,

which bears the following limit

lim
α↓1

1

α− 1
PowS$α,w(f, y) = w(y) lim

α↓1

(α− 1)αfw(y)
α−1

(α− 1)2
+

)
1− w(y)

*
lim
α↓1

(α− 1)αF̄α−1
w

(α− 1)2
− 1

=
1

2
lim
α↓1

+
w(y)

+
1

α− 1
αfw(y)

α−1 − 1

-
+

)
1− w(y)

*+ 1

α− 1
αF̄α−1

w − 1

--

+
1

2
lim
α↓1

8
w(y)

+
fw(y)

α−1
)
1 + α log fw(y)

*
− 1

-

+
)
1− w(y)

*+
F̄α−1
w

)
1 + α log F̄w

*
− 1

-;
.

Therefore,

lim
α↓1

1

α− 1
PowS$α,w(f, y) = w(y) log fw(y) +

)
1− w(y)

*
log F̄w = LogS$w(f, y).
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C Examples Table 3

C.1 LogS

We start with the derivation based on the density h. In particular,

LogS$w,h(f, y) = w(y) log f $
w,h(y) +

)
1− w(y)

* !

Y
log f $

w,h(q)h(q)dq,

= w(y)
#
log

)
fw(y)

*
1w>0 + log

)
F̄wh(y)

*
1w=0

$

+
)
1− w(y)

* !

{w=0}

#
log

)
fw(q)

*
1w>0 + log

)
F̄wh(q)

*
1w=0

$
h(q)dq,

= w(y) log fw(y) +
)
1− w(y)

* !

{w=0}
log

)
F̄wh(q)

*
h(q)dq,

eqv.
= w(y) log f(y) +

)
1− w(y)

*
log F̄w,

= Scsl(f, y).

As this generalised censored scoring rule does not depend on the nuisance density h,

we obtain the same result for the specific choice h = u.

C.2 PsSphSα

As illustrated more explicitly in C.1, the simplification below follows predominantly

from the observation that w(y)h(y) = 0, ∀y ∈ Y and fw(y) = 0, ∀y ∈ {w = 0}. More

specifically,

PsSphS$w,h(f, y) = w(y)

)
fw(y) + F̄wh(y)

*α−1

#"
Y
)
fw(y) + F̄wh(y)

*α
dy

$α−1
α

,

+
)
1− w(y)

*
"
{w=0}

)
fw(q) + F̄wh(q)

*α−1
h(q)dq

#"
Y
)
fw(y) + F̄wh(y)

*α
dy

$α−1
α

,

=
w(y)fw(y)

α−1 +
)
1− w(y)

*
F̄α−1
w ‖h‖αα

)
‖fw‖αα + F̄α

w‖h‖αα
*α−1

α

.

The expression for PsSphS$w,u(f, y) in Table 3 follows directly from the observation

that ‖1
θ1(r,r+θ)‖αα = θ1−α.
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C.3 PowSα

Using the hints in Appendix C.2, we easily arrive at

Pow$
w,h(f, y) = w(y)α

)
fw(y) + F̄wh(y)

*α−1

+
)
1− w(y)

*
α

!

{w=0}

)
fw(q) + F̄wh(q)

*α−1
h(q)dq

− (α− 1)
)
‖fw‖αα + F̄α

w‖h‖αα
*

= w(y)αfw(y)
α−1 +

)
1− w(y)

*
αF̄α−1

w ‖h‖αα

− (α− 1)
)
‖fw‖αα + F̄α

w‖h‖αα
*
.

Like in Appendix C.2, the expression for Pow$
w,u(f, y) in Table 3 follows directly from

the observation that ‖1
θ1(r,r+θ)‖αα = θ1−α.

C.4 CRPS

The additional assumption on the weight functions for the CRPS, that is, {w > 0} =

(−∞, r] and {w = 0} = (r,∞) yields that H(y) = 0, ∀y ∈ {w > 0} and Fw(y) =

1− F̄w, ∀y ∈ {w = 0}. Consequently, we arrive at the following intuitive expression for

the censored CRPS

CRPS$w,H(F, y)

= w(y)CRPS(F $
w, y) +

)
1− w(y)

* ! ∞

r
CRPS(F $

w, q)dH(q)

= w(y)

! ∞

−∞

)
F $
w(s)− 1(−∞,s](y)

*2
ds+

)
1− w(y)

* ! ∞

r

! ∞

−∞

)
F $
w(s)− 1(−∞,s](q)

*2
dsdH(q)

= w(y)

+! r

−∞

)
Fw(s)− 1(−∞,s](y)

*2
ds+

! ∞

r

)
F̄w(H(s)− 1) + 1(s,∞)(y)

*2
ds

-

+
)
1− w(y)

*+! r

−∞

)
Fw(s)

*2
ds+

! ∞

r

! ∞

r

)
F̄w(H(s)− 1) + 1(s,∞)(q)

*2
dsdH(q)

-

= w(y)

! r

−∞

)
Fw(s)− 1(−∞,s](y)

*2
ds+

)
1− w(y)

* ! r

−∞

)
Fw(s)

*2
ds

+ F̄ 2
w‖H − 1‖22 − 2

)
1− w(y)

*
F̄w‖H − 1‖22

eqv.
=

! r

−∞

)
Fw(s)− w(y)1(−∞,s](y)

*2
ds+ ‖H − 1‖22

)
F̄w − (1− w(y)

*2
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For the uniform nuisance distribution, with distribution function U(y) = (y−r)1(r,r+θ)+

1[r+θ,∞), it follows that

CRPS$w,U (F, y) =

! r

−∞

)
Fw(s)− w(y)1(−∞,s](y)

*2
ds+

θ

3

)
F̄w − (1− w(y)

*2

Furthermore, if we additionally assume that w(y) = 1(−∞,r](y), the scoring rule

simplifies to

CRPS$w,U (F, y) =

! ∞

−∞
1(−∞,r](y)

)
F (s)− 1(−∞,s](y)

*2
ds+

θ

3

)
F̄w − 1(r,∞)(y)

*2

C.5 CRPS for w(y) = 1[a,b](y)

For the compact indicator weight function w(y) = 1[a,b](y), a ≤ b, with a, b ∈ R and

Unif(b,b + θ) nuisance distribution, where θ ∈ R++, we obtain the following censored
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CRPS

CRPS$w(F, y)

= 1[a,b](y)CRPS(F
$
w, y) +

)
1− 1[a,b](y)

*1
θ

! b+θ

b
CRPS(F$

w, q)dq

= 1[a,b](y)

! ∞

−∞

)
F $
w(s)− 1(−∞,s](y)

*2
ds+

)
1− 1[a,b](y)

* ! b+θ

b

! ∞

−∞

)
F $
w(s)− 1(−∞,s](q)

*2
dsdq

= 1[a,b](y)

! ∞

−∞

)
Fw(s) + F̄w

+
s− b

θ
1(b,b+θ)(s) + 1[b+θ,∞)(s)

-
− 1(−∞,s](y)

*2
ds

+
)
1− 1[a,b](y)

*1
θ

! b+θ

b

! ∞

−∞

)
Fw(s) + F̄w

+
s− b

θ
1(b,b+θ)(s) + 1[b+θ,∞)(s)

-
− 1(−∞,s](q)

*2
dsdq

= 1[a,b](y)

8! b

a

)
F (s)− 1(−∞,s](y)

*2
ds+ F̄ 2

w

! b+θ

b

+
s− b

θ
− 1

-2

ds

;

+
)
1− 1[a,b](y)

*1
θ

9

:
! b+θ

b

8! b

a

)
F (s)

*2
ds+

! b+θ

b

+
F̄w

+
s− b

θ
− 1

-
+ 1(s,∞)(q)

-2

ds

;
dq

<

=

= 1[a,b](y)

8! ∞

−∞
1[a,b](s)

)
F (s)− 1(−∞,s](y)

*2
ds+

θ

3
F̄ 2
w

;

+
)
1− 1[a,b](y)

*
8! ∞

−∞
1[a,b](s)

)
F (s)− 1(−∞,s](y)− 1(−∞,a](y)

*2
ds+

θ

3
F̄ 2
w

+
1

θ

! b+θ

b

! b+θ

b
F̄w

+
s− b

θ
− 1

-
1(s,∞)(q)dsdq +

1

θ

! b+θ

b

! b+θ

b
1(s,∞)(q)dsdq

;

=

! ∞

−∞
1[a,b](s)

)
F (s)− 1(−∞,s](y)

*2
ds+

θ

3
F̄ 2
w + 1(−∞,a](y)

8
b− a− 2

! b

a

)
F (s)− 1(−∞,s](y)

*
ds

;

+
)
1− 1[a,b](y)

*+
−θ

3
F̄w +

θ

2

-

eqv.
=

! ∞

−∞
1[a,b](s)

)
F (s)− 1(−∞,s](y)

*2
ds+

θ

3
F̄ 2
w − θ

3
F̄w

)
1− 1[a,b](y)

*
− 21(−∞,a](y)

! b

a
F (s)ds

eqv.
= twCRPS(F, y) +

θ

3

#
F̄w −

)
1− 1[a,b](y)

*$2
− 21(−∞,a](y)

! b

a
F (s)ds,

where twCRPS denotes the weighted CRPS scoring rule proposed by Gneiting and

Ranjan (2011). Although the twCRPS scoring rule remains proper for every weight

function, this scoring rule fails to be strictly locally proper if the class of weight func-

tions contains indicators on compact intervals (Holzmann and Klar, 2017a). Therefore,

it is unsurprising that the censored CRPS, which is strictly locally proper relative to

the class of distributions and weight functions for which it delivers a scoring rule (Defi-
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nition 1) by Theorem 2, is not equivalent to the twCRPS scoring rule. The ‘correction

term’ consists of two parts. The first one is simply the Brier score of the probability

forecast F̄w =
"
Y(1 − 1[a,b](y))dF (y) of the event y ∕∈ [a, b], multiplied by θ

3 . This

additional term is somewhat similar to the additional log-score applied to the discrete

probability assigned to the complement of the region of interest in the csl rule, neces-

sary for strict local propriety. Furthermore, the factor θ
3 determines the weight with

which the Brier score of the complement of the region of interest enters the scoring

rule.

The third term can be seen as a by-product of the specific choice of the location

of the uniform distribution, which puts the censored distribution function to zero on

(−∞, a]. Notably, this term drops out of the equation in the popular left-tail applica-

tion, i.e. a ↓ −∞, in which case the censored CRPS reduces to

CRPS$w(F, y)
eqv.
= twCRPS(F, y) +

θ

3

)
F̄w − 1(b,∞)(y)

*2
.

According to Theorem 3 of Holzmann and Klar (2017a), the twCRPS scoring rule is

also strictly locally proper without the second term if a ↓ −∞. Moreover, right-tail

applications for which b ↑ ∞ are obviously not compatible with the current choice of

the location of the uniform reference distribution.
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