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Abstract

When comparing predictive distributions, forecasters are typically not equally
interested in all regions of the outcome space. However, extant methods to focus
strictly proper scoring rules on a region of interest, do not maintain strict propriety.
We propose a natural procedure for transforming strictly proper scoring rules into
their strictly locally proper counterparts, nesting the censored likelihood score as a
special case. Our procedure also implies a class of censored kernel scores, offering
a multivariate alternative to the weighted Continuously Ranked Probability Score
(twCRPS), additionally solving its local impropriety for weight functions other than
single tail indicators, for which the twCRPS is recovered. Within this framework, we
obtain a generalization of the Neyman Pearson lemma. For less restricted hypotheses,
the results of Monte Carlo simulations and applications to risk management, inflation
and climate data, confirm our intuition that censoring generally leads to higher power
than conditioning.
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1 INTRODUCTION

Over the past decades, probabilistic forecasts have garnered increasing attention across a

variety of disciplines, primarily as they provide a more comprehensive understanding of the

stochastic nature of a random variable under scrutiny than point forecasts (Dawid, 1984).

A cornerstone for the effective evaluation of such probabilistic forecasts is the employment

of strictly proper scoring rules (Gneiting and Raftery, 2007; Brehmer and Gneiting, 2020;

Patton, 2020), which have been widely advocated for their capacity to ensure unbiased

comparative assessments of different forecasting methods. While the utility of probabilistic

forecasting is well-recognized, specialized applications, such as the assessment of extreme

financial portfolio losses, require a localized evaluation of predictive distributions.

In this paper, we introduce a localization mechanism for strictly proper scoring rules

that preserves strict propriety. Leveraging the concept of censoring (Bernoulli, 1760) from

the Tobit model (Tobin, 1958), the proposed transformation finds a sweet spot between

retaining and excluding information when focusing the original distribution to a region of

interest. Specifically, unlike approaches that employ conditional distributions, our method

maintains the overall probability of receiving an observation in (or outside) the target

region, obviously informative when comparing various candidate distributions focused on

the same area. Moreover, within the region of interest, our mechanism replicates the original

distribution’s shape, which is particularly beneficial when evaluating functionals specific

to this region, such as Value-at-Risk (VaR) or Expected Shortfall (ES). Our procedure

encompasses well-established strictly locally proper scoring rules, including the censored

likelihood (csl) score, proposed by Diks et al. (2011) and the weighted Continuously Ranked

Probability Score (twCRPS, proposed by Gneiting and Ranjan (2011)), for weight functions

for which Holzmann and Klar (2017) have shown that the twCRPS is strictly locally proper.
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On the other hand, for weight functions for which the twCRPS is not strictly locally proper,

we show that the twCRPS suffers from a localization bias because it retains too much

information.

We prove a generalization of the Neyman Pearson 1933 lemma, revealing that the cen-

sored likelihood ratio leads to a Uniformly Most Powerful (UMP) test. In contrast, we

provide explicit evidence that the conditional likelihood (cl) score does not admit a UMP

test. This insight suggests that the additional information retained by our censoring ap-

proach translates into advantageous power properties. In applied work, the comparative

performance between candidate distributions is often evaluated using the framework de-

veloped by Giacomini and White (2006), utilizing a Diebold and Mariano (2002) type test

statistic, henceforth referred to as DM test. However, conducting a power analysis for this

test becomes intricate, as the null hypothesis, asserting that the expected score difference

between the candidate distributions with respect to the underlying distribution is zero,

depends on the scoring rule being employed. Resorting to a Monte Carlo study based

on specific scoring rules, candidate distributions and weight functions, we obtain strong

evidence in favor of our censoring approach. Additionally, we revisit the size experiment

originally proposed by Diks et al. (2011), corroborating that all evaluated tests are size

correct.

The empirical part of our paper focuses on three different domains: finance, specifically

extreme portfolio losses of the S&P500; macroeconomics, centering on inflation rates both

far from and near the target; and meteorology, examining high and agriculturally-optimal

temperatures. In each of these studies, we employ a collection of candidate methods, which

are subjected to the Model Confidence Set (MCS) procedure as delineated by Hansen et al.

(2011). Notably, a higher power in the DM test corresponds to a smaller MCS; therefore, we
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use the size of the MCS as a proxy for power in our experiments. The results overwhelmingly

favor the censored scoring rules, as evidenced by the typically (much) smaller MCS across

the different applications.

Our research primarily contributes to the literature on focused scoring rules, which

starts with the weighted likelihood score of Amisano and Giacomini (2007), which simply

multiplies the unweighted logarithmic scoring rule by a weight function. However, as

pointed out by Diks et al. (2011) and Gneiting and Ranjan (2011), this method leads

to improper scoring rules because it favors distributions that allocate more mass to regions

with higher weights, irrespective of the true underlying distribution. To address this,

Gneiting and Ranjan (2011) formulated the twCRPS, while Diks et al. (2011) introduced

the cl and csl rules. Holzmann and Klar (2017, Theorem 1) expanded upon the idea

of using the conditional likelihood by offering a general procedure for focusing regular

scoring rules, applying the regular scoring rule to a conditioning-type transformation of

the original distribution. Our work diverges from theirs in the specific transformation

applied to the original distribution: we utilize a censored distribution as opposed to a

conditional one. This distinction bears significant impact: our censoring-based mechanism

is the sole approach guaranteed to yield strictly locally proper scoring rules. Moreover, we

note that the conditioning framework put forth by Holzmann and Klar (2017, Theorem

1) can also be established from a generalization of the weighted log-likelihood scoring rule

proposed by Amisano and Giacomini (2007), modified by a ‘properization’ transformation

as delineated by Brehmer and Gneiting (2020, Theorem 1). Consequently, ‘properization’

is not a viable mechanism for achieving strict local propriety either.

Our research also rests upon a substantial body of research concerning strictly proper

scoring rules and their associated divergence measures. While the formalization of strict
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propriety was rigorously achieved by Gneiting and Raftery (2007), scoring rules satisfying

this property date back to at least the Quadratic Scoring rule by Brier (1950). Literature in

this domain has evolved from an initial focus on discrete settings (Good, 1952; Toda, 1963;

Roby, 1964; Good, 1971; Shuford et al., 1966; Savage, 1971; Selten, 1998; Jose, 2009), to the

more general scope of Gneiting and Raftery (2007). In this vein, we rely on the expanded

frameworks of the Power (PowSα) and PseudoSpherical (PsSphSα) families as advocated by

Gneiting and Raftery (2007) and Ovcharov (2018) rather than their discrete foundations.

Additionally, scoring rules are inherently interconnected with divergence measures; under

the banner of strict propriety, these measures are subsumed under Bregman divergences

(Dawid, 2007; Gneiting and Raftery, 2007; Ovcharov, 2018; Painsky and Wornell, 2019).

This effectively excludes f -divergences other than Kullback-Leibler divergence (Kullback

and Leibler, 1951), distinguished for its favorable properties (Liese and Vajda, 2006).

Interest in targeting specific regions of predictive distributions has surged across diverse

fields, underscored by analyses of extreme events in disciplines such as meteorology, clima-

tology, hydrology, finance, and economics (Lerch et al., 2017). In the sphere of financial

risk management, attention is particularly concentrated on the left tail of loss distributions,

conforming to mandated risk metrics like Value-at-Risk (VaR) and Expected Shortfall (ES)

(Fissler et al., 2015; Nieto and Ruiz, 2016). Analogously, in macroeconomic frameworks,

concepts such as ‘Inflation at Risk’ and ‘GDP at Risk’ are emerging, signifying values

that deviate significantly from benchmarks established by institutions like Central Banks

(Lopez-Salido and Loria, 2022; Iacopini et al., 2023). In other scenarios, the emphasis

might rest on the central region or on a specific subset of the distribution, often dictated

by external constraints or objectives. Examples range from optimizing growing conditions

for specific crops like tubers, to calibrating wind speeds for peak wind turbine performance,
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maintaining optimal reservoir levels for hydroelectric power generation, managing queue

lengths in retail settings for enhanced customer service, and regulating blood sugar levels

for effective diabetes management. As illustrated by Lerch et al. (2017), it is crucial to

distinguish between strict propriety and strict local propriety; failing to do so can result in

misleading forecast outcomes.

The remainder of this paper is organized as follows. Section 2 lays the groundwork

by introducing the foundational concepts essential for the subsequent analysis. Section 3

formally defines the Generalized Censored Scoring Rule and establishes the conditions

under which it is strictly locally proper. This section also showcases a variety of examples

and debuts the Z-Q-Randomization procedure, proven to be equivalent to the Generalized

Censored Scoring Rule. It concludes with a generalization of the Neyman-Pearson Lemma.

Section 3.5 contains Monte Carlo studies comparing the size and power of tests evaluating

the equal predictive ability of conditional and censored scoring rules. Section 4 discusses

the results of our empirical applications. Section 5 concludes.

2 SCORING RULES

2.1 Regular scoring rules

Consider a random variable Y : Ω → Y from a complete probability space (Ω,F ,P) to

a measurable space (Y ,G). Denote by P a convex class of distributions on (Y ,G). A

scoring rule S assigns numerical values (scores) to observations y ∈ Y and distributions

F ∈ P , through a mapping S : Y × P → R ∪ {−∞}. Following Holzmann and Klar

(2017), we assume that any scoring rule S is measurable with respect to G and quasi-

integrable with respect to all P ∈ P , for all F ∈ P , and such that EPS(F, Y ) < ∞
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and EPS(P, Y ) ∈ R,∀P,F ∈ P . The latter condition guarantees that the score divergence

DS(P∥F) := EPS(P, Y )−EPS(F, Y ), exists, and maps onto (−∞,∞]. Adhering to Gneiting

and Raftery (2007), a minimal requirement for S is that it is strictly proper (Definition 1).

Definition 1 ((Strictly) proper scoring rule). A scoring rule S : P × Y → R̄ is proper

relative to P if DS(P∥F) ≥ 0, ∀P,F ∈ P, and strictly proper if, additionally, DS(P∥F) = 0

iff P = F, ∀P,F ∈ P.

Equivalently, a score divergence is a divergence measure (see e.g. Eguchi (1985)) if

and only if S strictly proper. For distributions on
(
Rd,B

(
Rd

))
, where B(Y) denotes the

Borel σ-algebra on Y , this divergence is known to be a Bregman divergence (Bregman,

1967) under the conditions listed by Ovcharov (2018). Two remarks are in place. First,

comparisons of candidates F ∈ P are in terms of P-expectations, whence it follows that

uniqueness of members in P should formally be interpreted as a P-a.s. equivalence class

of P. For clarity, we omit technicalities about P-a.s. equivalence. Second, if there exists

a σ-finite measure (Y ,G) such that F ≪ µ, ∀F ∈ P then scoring rules and associated

definitions and results can easily be formulated relative to the class of induced µ-densities

f = dF
dµ
, also denoted by P .

In their review paper, Gneiting and Raftery (2007) provide an abundant list of strictly

proper scoring rules, which can be divided into two categories: local scoring rules and

distance sensitive scoring rules (Ehm and Gneiting, 2012). We use the same structure when

discussing examples, yet allowing local scoring rules, henceforth called semi-local, to also

depend on the density via a global norm of the density. Within this subcategory, our focus

lies on the Logarithmic (LogS) (Good, 1952; Toda, 1963), Quadratic (QS) (Brier, 1950) and

Spherical (SphS) (Roby, 1964; Good, 1971) scoring rules, along with their extensions to the

Power (PowSα) and PseudoSpherical (PsSphSα) families. Our choice of distance-sensitive
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scoring rules is confined to the Energy Scores (ES) subfamily, a subclass of the class of

strictly proper scoring rules given by Theorem 5 of Gneiting and Raftery (2007), nesting

the real-valued Continuously Ranked Probability Score (CRPS) (Matheson and Winkler,

1976; Hersbach, 2000) as a special case.

2.2 Weighted scoring rules

Example 1 (The need to focus). Let Y be a random variable that follows a piecewise

uniform distribution across the intervals A = [0, 1), B = [1, 2) and C = [2, 3], with prob-

abilities πA, πB and πC, respectively. The parameters of the true distribution P and two

candidates F and G are detailed in Table 1, with corresponding CDFs displayed in Fig-

ure 1. Consider the CRPS, which is strictly proper and has score divergence DCRPS(F||G) =∫ 3

0

(
F (s) − G(s)

)2
ds. From Figure 1 it is obvious that DCRPS(P||F) > DCRPS(P||G). But

then DCRPS becomes useless if only observations in B are pertinent, as F coincides with P

on B, that is, P(E ∩B) = F(E ∩B),∀E ∈ G, in contrast to G.

πA πB πC

P 1
5

2
5

2
5

F 2
5

2
5

1
5

G 1
5

3
5

1
5

Table 1: Parameters y

CDF

0 1 2 3

0

1
5

2
5

3
5

4
5

1

P

F

G

A B C

Figure 1: Distribution functions

As demonstrated in Example 1, it becomes imperative to adapt the scoring rule when
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particular outcomes are of particular importance. Without such adaptation, an excellent

fit in non-critical regions of the outcome space may obscure a poor fit in regions of actual

relevance. Modeling the relative importance of outcomes y ∈ Y by a weight function

w ∈ W , defined as any G-measurable mapping w : Y → [0, 1], the question arises how to the

transform the original scoring rule S by this weight function. We concur with the arguments

put forward by Holzmann and Klar (2017) that the weighted scoring rule Sw must be

localizing. Specifically, for all outcomes, the variation in Sw should be solely dependent on

changes in the distribution within the region of interest {w > 0} := {y ∈ Y : w(y) > 0}.

This concept is formalized in Definition 2, borrowed from Holzmann and Klar (2017). If

a weighted scoring rule is non-localising, this may cause a so-called localization bias, as

illustrated by Example 2.

Definition 2 (Localizing weighted scoring rule). A weighted scoring rule S, that is, a map

S : P ×Y ×W → R̄ such that Sw(·, ·) is a scoring rule for each w ∈ W, is localizing if for

any P, F ∈ P, w ∈ W, it holds that

∀E ∈ G : P({w > 0} ∩ E) = F({w > 0} ∩ E) =⇒ Sw(P, y) = Sw(F, y), ∀y ∈ Y .

Example 2 (Localization bias). Revisit the case of the random variable Y with actual

distribution P and candidates F and G as described in Example 1. Assume the region of

interest is B, modeled by the weight function w(y) = 1B(y). A prevalent weighted extension

of the CRPS is given by twCRPS(F, y) =
∫
B

(
F (s) − ∆y(s)

)2
ds, with score divergence

DtwCRPS(P∥F) =
∫
B

(
F (s) − G(s)

)2
ds. This weighted variant of the CRPS is clearly non-

localizing. For instance, because its value is influenced by F(A), while F(A) is not implied

by F(B); only the sum F(A) + F(C) is. Consequently, the scoring rule depends on the

distribution F outside B in a way that is not implied by F restricted to B. Its failure to be

localizing introduces a bias in evaluating distributions over B. Indeed, by suggesting that
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G is statistically closer to P than F is, while F coincides with P on B (see Figure 1), the

twCRPS inappropriately favors G.

Example 3 (Locally improper). Returning to the context of Example 1, we examine the

weighted likelihood score wl(f, y) = log f(y)1B(y) proposed by Amisano and Giacomini

(2007). Although this scoring rule is localizing and the unweighted logarithmic scoring

rule strictly proper, it still inappropriately favors G. Specifically, we have log g(y) >

log f(y),∀y ∈ B, irrespective of p(y), leading to Dwl(F∥G) > Dwl(P∥G).

Example 3 illustrates that localizing versions of strictly proper scoring rules are not

automatically proper for all weight functions. In light of this, we focus on the specialized

subclass of localizing scoring rules that consistently maintain this property. By construc-

tion, a localizing weighted scoring cannot be strictly proper, unless w(y) > 0,∀y ∈ Y .

This is because any distribution P̃ equivalent to P on {w > 0} but different on {w = 0}

will receive an identical score. Nonetheless, as emphasized by Example 4 some notion of

strictness remains advantageous.

Example 4 (Proportionally locally proper). Consider the family of weighted scoring rules

S♯
w(F, y) := w(y)S(F♯

w, y), dF♯
w :=

1

1− F̄w

dFw,

proposed by Holzmann and Klar (2017), where S is a regular scoring rule, dFw := wdF the

weighted kernel of distribution F and F̄w =
∫
Y(1 − w)dF. This scoring rule is localizing

and proper for weight functions for which it remains a scoring rule (see Section 2.1). Yet,

when revisiting the setup of Example 1 for w(y) = 1B(y), we trivially have that S♯
B(F, y) =

S♯
B(G, y) = S♯

B(P, y), ∀y ∈ B, since S♯
w cannot discriminate between distributions that are

proportional to each other on {w > 0}. Accordingly, DS♯
B
(P∥F) = DS♯

B
(P∥G) = 0, while

only F coincides with P on B. In other words, the score divergence of a candidate from
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P is properly zero if (but not only if) the candidate coincides with P on B, as is the case

for F.

Motivated by Examples 2, 3 and 4, this paper posits the necessity for weighted scoring

rules to be strictly locally proper, as articulated in Definition 3. Compared to the defini-

tion of strict propriety (Definition 1), strictness is only required locally. More precisely,

equivalent distributions on {w > 0} must have weighted score divergence zero and, vice

versa, distributions at zero weighted score divergence of each other must be equivalent on

{w > 0}. The latter ruling out the ambiguities highlighted in Example 4.

Definition 3 ((Strictly) locally proper scoring rule). A weighted scoring rule S : P ×Y ×

W → R̄ is locally proper relative to (P ,W) if it is localizing and Sw(·, ·) is proper for each

w ∈ W. Furthermore, it is strictly locally proper relative to (P ,W) if, additionally,

P({w > 0} ∩ E) = F({w > 0} ∩ E), ∀E ∈ G ⇐⇒ DSw(P∥F) = 0, ∀w ∈ W .

3 THE CENSORED SCORING RULE

To overcome issues like the non-strictness and non-locality of the weighted scoring rules

discussed above, we propose to use censoring as focusing mechanism. Censoring (Bernoulli,

1760) is a statistical concept that is used in econometrics to model a dependent variable

whose value is only partially known (Tobin, 1958). More specifically, for realisations in Ac,

the complement of A, it is only known that they are not in A. Events in Ac are hence

indistinguishable after censoring and ‘Ac’ could therefore be viewed as a single outcome of

the censored random variable. To avoid confusion, we label observations in Ac by ‘∗’ rather

than ‘Ac’ itself, which is nothing but an abstract event for which one can alternatively read
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‘NaN’. The censored random variable

Y ♭
A =


Y, Y ∈ A,

∗, Y ∈ Ac,

is defined relative to the extended measurable space (Y∗,G∗), where Y∗ = Y ∪ {∗} and

G∗ = σ({G, ∗}), that is, the smallest σ-algebra containing the collection {G, ∗}. Similar to

the conditional distribution in Example 4, we extend the definition of the distribution of

Y ♭
A to general weight functions w ∈ W . Specifically, we define the censored distribution as

dF♭
w = dFw + F̄wdδ∗, F̄w :=

∫
Y
(1− w)dF, w ∈ W , F ∈ P , (1)

where δ∗ denotes the Dirac measure at ∗, i.e. δ∗(E) = 1E(∗). To make this change of

measure well-defined, we consider the original measures F ∈ P relative to the extended

measurable space (Y∗,G∗), by defining F(∗) = 0 and taking some value for w(∗). In case

F ≪ µ,∀F ∈ P , we are invited to work with the µ-densities f ∈ P instead, and their

associated (µ+ δ∗)-densities

f ♭
w = wf1y ̸=∗ + F̄w1y=∗, w ∈ W , f ∈ P . (2)

A detailed proof of this result is deferred to Appendix B.1. Albeit restricted to w(y) =

1A(y), Borowska et al. (2020) also work with an explicit formulation of the censored density,

coinciding with f ♭
A in the context of maximum likelihood. To ease notation, we consistently

use the subscript A instead of 1A in indicator function references.

Ideally, the censored scoring rule would be given by S♭
A(F, y) = S(F♭

A, y
♭
A), as this would

fully respect the forecaster’s specific choice of the regular scoring rule S. The censored

scoring rule given by Definition 4 reduces to this definition for the indicator weight function

w(y) = 1A(y). The censored scoring rule is also attractive for general weight functions,

but this will be particularly clear from the randomization perspective taken in Section 3.2,
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which yields a similar identity for general weight functions; see Equation (4). According

to Theorem 1, the censored scoring rule is strictly locally proper. Since Theorem 1 is a

corollary of Theorem 2, we have sustainably omitted a proof for this result.

Definition 4 (Censored scoring rule). Let S : P♭ × Y → R̄, P♭ = {F♭
w,F ∈ P , w ∈ W},

denote a scoring rule. Then, the corresponding censored scoring rule is given by the map

S♭ : P × Y ×W → R̄,

S♭
w(F, y) := w(y)S(F♭

w, y) +
(
1− w(y)

)
S(F♭

w, ∗),

where the censored distribution F♭
w is defined in Equation (1).

Theorem 1. Suppose that the regular scoring rule S is strictly proper relative to P♭. Then,

the censored scoring rule S♭ in Definition 4 is strictly locally proper relative to (P ,W).

The assumption in Theorem 1 ensures that the scoring rule is well-defined with respect

to mixed continuous-discrete distributions on (Y∗,G∗). We will verify that this assumption

holds in the examples discussed in Subsection 3.3.

Let us conclude this section by providing some intuition for the result of Theorem 1.

Given some weight function w ∈ W , it should be clear that censoring maintains a one-to-

one connection with the original distribution on {w > 0}. This relation can be harmed by

conditioning due to the additional normalisation of the weighted kernel. This difference is

even clearer for indicator weight functions since F♭
A = F, while F♯

A ̸= F, on A. Because of

this, only the censored scoring rule allows for identifying the original distributions on {w >

0} when comparing two candidates F and G. This additionally requires disentanglabity

of the weighted kernels and discrete probabilities in the censored measures, implied by

Fw(∗) = Gw(∗) = 0. Consequently, the assumed strict propriety of the original rule localizes

to {w > 0} for the censored scoring rule.
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3.1 Generalized censored scoring rule

Given the intuition at the end of the previous section, it is not entirely surprising that one

can perform other transformations to the distribution on {w > 0} as long as the trans-

formation is independent of the distribution and traceable when comparing two candidate

distributions. The latter requirement is formalized by Assumption 1, under which the gen-

eralized censored scoring rule in Definition 5 is still strictly locally proper. Appendix A.1

details a proof for this result, summarized by Theorem 2.

Definition 5 (Generalized censored scoring rule). Let S : P♭ × Y → R̄ denote a scoring

rule. The associated generalized censored scoring rule is given by the map S♭ : P × Y ×

W ×H → R̄,

S♭
w,H(F, y) = w(y)S(F♭

w,H, y) +
(
1− w(y)

)
EHS(F

♭
w,H, ·), dF♭

w,H = dFw + F̄wdH,

where F♭
w,H is referred to as the generalized censored distribution of F.

Assumption 1. A weight function w ∈ W and nuisance distribution H ∈ H ⊆ P is such

that ∃E ∈ G : Fw(E) = 0 and H(E) > 0, ∀F ∈ P ,H ∈ H.

Theorem 2. Suppose that (i) the regular scoring rule S in Definition 5 is strictly proper

relative to P, and (ii) W and H are such that Assumption 1 is satisfied. Then, the general-

ized censored scoring rule S♭ in Definition 5 is strictly locally proper relative to (P ,W ,H).

Finally, a corollary of Lemma 2 in the proof of Theorem 2 in Appendix A.1 is that

DS♭
w,H

(F∥G) = DS(F
♭
w,H∥G♭

w,H), (3)

i.e. the censored score divergence from F to G is the score divergence of the corresponding

censored distributions. In particular, this means that we have identified a family of so-

called localized divergence measures, satisfying the properties of a divergence measure (see
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Subsection 2.1) on {w > 0}. Indeed, if S is strictly proper, such that DS is a divergence

measure, it follows that DS♭
w,H

(F∥G) ≥ 0, with strict equality if and only if F(E ∩ {w >

0}) = G(E ∩ {w > 0}), ∀E ∈ G.

3.2 Z,Q-Randomization

The (generalized) censored scoring rule in Definition 4 (5) of the previous section can

alternatively be formulated in terms of a randomization procedure. This procedure relies

on an auxiliary random variable Zw, indicating, conditional on the realisation y, whether

the observation is censored or not. More specifically, we let

y♭Zw
= φ(y, Zw), φ(y, Zw) :=


y, Zw = 1,

∗, Zw = 0,

where Zw|(Y = y) ∼ BIN
(
1, w(y)

)
. By working out the conditional expectation, it is obvi-

ous that Y ♭
w = EZw|(Y=Y )φ(Y, Zw) coincides with the specification of the censored random

variable in Equation (1). For w(y) = 1A(y), the random variable ZA degenerates to being

one if y ∈ A and zero otherwise, so that Y ♭
ZA

= Y ♭
A with probability one. Correspondingly,

the Z-randomization definition of the censored scoring rule reads

S♭
w(F, y) = EZw|Y=yS(F

♭
w, y

♭
Zw

), (4)

which is equivalent to the censored scoring rule defined by Definition 4.

A similar line of reasoning holds for the generalized censored scoring rule. In addition

to the auxiliary random variable Zw, we introduce an independent random variable Q with

distribution H. Rather than labeling the observation as censored, we now take a random
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draw from Q if Zw = 1, i.e. we define

y♭H,w := φw,H(y, Zw, Q), φw,H(y, Zw, Q) :=


Y, if Zw = 1,

Q, if Zw = 0.

As anticipated, the distribution of Y ♭
H,w = EZw|(Y=Y ),Hφ(Y, Zw) coincides with the spec-

ification of F♭
w,H in Equation (1). Additionally, the generalized censored scoring rule of

Definition 5 admits the Z,Q-randomization representation

S♭
H,w(F, y) =EZw|(Y=y),HS

(
F♭
w,H, y

♭
H,w

)
.

The randomization perspective further clarifies why S♭
H,w generalizes S♭

w(F, y). Indeed,

by choosing a degenerate distribution for Q at ∗, each ‘random draw’ from Q will be

precisely the censoring label ∗ of the Z-randomization procedure. Put differently, S♭
H,w =

S♭
w(F, y) for H = δ∗.

3.3 Examples

3.3.1 Semi-local scoring rules

We will now apply our censoring framework to the regular scoring rules introduced in

Subsection 2.1. Following the classification into semi-local and distance-sensitive scoring

rules, we start with localizing the former class. Together with the main characteristics of the

LogS, PowSα and PsSphSα families, Table 2 presents the localized versions of these families

based on conditioning, censoring and generalized censoring. Given the strict propriety

classes in Table 2, one can easily verify their strict propriety with respect to P♭
α since

∥f ♭
w∥αα ≤ 1 + ∥f∥αα < ∞, ∀f ∈ Pα, ∀w ∈ W , where α = 1 for LogS. Furthermore, the

Bregman generator functions ζ(t) refer to the well-known subclass of separable Bregman

divergences, consisting of the score divergences based on strictly proper scoring rules Sζ :
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P(Y ,G)× Y → R of the form

Sζ(p, y) = ζ ′(p(y))−
∫
Y
ζ ′(p(y))p(y)− ζ(p(y))µ(dy).

Comparing the censored and conditioned versions of the rules, we notice that the cen-

sored variants bear an isolated F̄w-dependent term, preserving the coverage probability of

{w = 0}. While preserving the likelihood F̄w of being censored, Table 2 also shows that the

censored scoring rules are independent of ∗, the label of a censored observation. Hence, for

this selection of scoring rules, one could alternatively work with an actual number like r for

the location of the residual probability F̄w. Strictly speaking, we need to require Fw(r) = 0

in that case, to keep the censored scoring rule strictly locally proper (see Assumption 1),

but this is trivially met by restricting to either continuous measures or weight functions

satisfying w(r) = 0, or both. The generalized censored scoring rules in Table 2 show that

the invariance with respect to the location of the discrete probability mass holds more gen-

erally. In particular, the generalized censored scoring rules turn out to be entirely invariant

to the choice of the nuisance density on {w = 0} upon normalisation by the α-norm of

h, i.e. to the class of densities h̃ = h/∥h∥α , where α = 1 for LogS. Since ∥h∥1 = 1, the

latter means that LogS is invariant to the unnormalised choice of h, as can be seen from

Table 2. Finally, Table 2 includes the localized divergence measures DS♭
w
, which are all

localized Bregman divergences since all regular divergences DS in this table are Bregman.

3.3.2 Distance sensitive scoring rules

A rich class of distance-sensitive scoring rules is the Energy Score family

ESβ(F, y) =
1

2
EF∥Y − Ỹ∥β2 − EF∥Y − y∥β2 , β ∈ (0, 2),

known to be strictly proper to the class of Borel probability measures on Rd such that

EF∥Y∥β2 < ∞ (Gneiting and Raftery, 2007). From this expression, it is immediately clear
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that the corresponding censored ES family depends, in contrast to the semi-local scoring

rules, on ∗, or more particularly, the distance d(y) = ∥y − ∗∥2. Specifically,

S♭
w,d(F,y) =

1

2
EF♭

w
∥Y − Ỹ∥β2 − EF♭

w

(
w(y)∥Y − y∥β2 +

(
1− w(y)

)
d(Y)β

)
.

It is unsurprising that distance-sensitive scoring rules are sensitive to the location of the

discrete probability F̄w. An easy way to define d(y) is to simply add the location of F̄w by

choosing ∗ ∈ Rd. It is important, however, to keep in mind that the censored scoring rule

is not invariant with respect to this additional piece of information. More precisely, the

selected value for ∗, say r, is now not only representing the event of being censored but also

the value an observation gets after being censored. In the subsequent discussion, we do

not extend the generality by introducing a new distance measure. Instead, we allocate the

residual mass F̄w across a set of ‘pivotal points,’ denoted as A := {ai}na
i=1. This approach is

motivated by the empirical observation that weight functions often possess pivotal points,

such as the edges of an indicator function or the center of a kernel (Gneiting and Ranjan,

2011).

If the weight function at hand has one pivotal point a1, i.e. w(y) = 1(−∞,a1)(y), then

we thus propose to use the censored scoring rule S♭
w in conjunction with the censored

distribution dF♭
w = dFw + F̄wdδa1 and if na > 1, being the special case (γ1 = 1) of the

general solution to use the generalized censored measure with the censored distribution

dF♭
w = dFw + F̄w

na∑
i=1

γidδai , (γ1, . . . , γna)
′ ∈ ∆(na) (5)

where ∆(na) denotes the unit simplex.

Our approach to distance-sensitive scoring rules has some interesting implications for

the CRPS. First of all, for all left- and right-tail indicator functions, CRPS♭
w coincides with

twCRPS. In other words, CRPS♭
w = twCRPS, for all weight functions for which (Holzmann
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and Klar, 2017, Theorem 5) proved that the twCRPS is strictly locally proper. Second, for

other weight functions like the center indicator functions for which the twCRPS twCRPS

loses its strict local propriety due to its non-localizing nature, CRPS♭
w serves as a strictly

locally proper alternative. This alternative bears an additional parameter γ, the selection of

which is contingent on the specific application. For the indicator function w(y) = 1[−r,r] it

makes sense to choose γ = 1
2
if one aims to compare the predictive ability of two candidates

that are both symmetric around zero. Moreover, in applications where empirical data are

available to estimate residual probabilities based on the DGP, using such data to set γ

facilitates a more equitable comparison of candidate performance on A. It is important to

note that using the data instead of the candidates to estimate γ, sets a level playing field

for the candidates in terms of their performance on A. After all, this approach ensures

that the relative performance of the candidates on A is not obscured by the performance

outside A (for the part that is not entirely implied by the distribution on A).

Mathematically, we can illustrate the difference between the generalized censored scor-

ing rule based on the censored measure in Equation (5) and the twCRPS as follows. Con-

sider the center indicator function w(y) = 1A(y), where A = [a1, a2]. The twCRPS and the

censored CRPS are related as follows

twCRPS(F, y) = CRPS(F†
w, y

†
w), dF†

w = dFw + F̄w

(
γFdδa1 + (1− γF)dδa2

)
where γF = FwL/F̄w, FwL = F(AL), Ac

L = (−∞, a1). Furthermore, y†w = y1A(y) +

a11Ac
L
(y)+a21Ac

R
(y), with Ac

R = (a2,∞), allowing the twCRPS to assign different scores to

observations in Ac
L and Ac

R. One critical difference between the generalized censored mea-

sure and F†
w is that the latter candidate’s reference distribution depends on the candidate

itself, namely through the dependence of the proportion parameter on F. In expectation,

the difference between the twCRPS and the generalized censored scoring rule reduces to
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precisely this difference between γ = PwL/P̄w, where P denotes the underlying distribution

of Y , and γF. Specifically,

EPtwCRPS(F, Y ) = EPCRPS
†
w(F, Y ),

where the only difference between CRPS†
w and CRPS♭

w is the dependence on F†
w rather

than F♭
w, i.e.

CRPS†
w(F, y) =


CRPS(F†

w, y), if y ∈ A

γCRPS(F†
w, a1) + (1− γ)(F†

w, a2), if y ∈ Ac.

Unlike the twCRPS, this scoring rule does not depend on whether an observation is in AL

or AR.

For the center indicator case, for which the twCRPS is not strictly locally proper and

hence not a generalized censored scoring rule, we have now derived the alternative (close

to censoring) procedure, which is helpful in two ways. (i) By revealing the recipe for

obtaining the twCRPS, we uncovered the multivariate twCPRS for practitioners that are

despite the localization bias still willing to use the twCRPS in a multivariate setting. (ii) We

have uncovered precisely the difference between the twCRPS and the generalized censored

scoring rule, i.e. γ versus γF in the definition of the focused measure.

3.4 Localized Neyman–Pearson

In anticipation of our favorite applications, we now switch to an explicit time series context.

In particular, consider a stochastic process {Yt : Ω → Y}Tt=1 from a complete probability

space (Ω,F ,P) to a measurable space (YT ,GT ), where YT and GT denote the product

outcome space and σ-algebra of the individual outcome spaces Y and σ-algebras G, re-

spectively. The process generates the filtration {Ft}Tt=1, in which Ft = σ(Y1, . . . , Yt) is the
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information set at time t, satisfying Ft ⊆ Ft+1 ⊆ F , ∀t. We denote predictive distributions

of Yt+1 based on Ft by Ft, predictive distribution functions by Ft and predictive µt-densities

by ft. The existence of the sequence of densities ft is implied by the existence of a sequence

of measures {µt} such that Ft ≪ µt,∀t. Furthermore, the regions of interest At ⊆ Y are

always assumed to be Ft-measurable.

The aim of this section is to derive a uniformly most powerful (UMP) test for the

following null and alternative hypothesis

H0 : p0t1At = f0t1At , ∀t vs H1 : p1t1At = f1t1At , ∀t. (6)

Although the predictive densities fjt =
Fjt

dµt
, j ∈ {0, 1}, are assumed to be known,

the testing problem remains a multiple versus multiple hypothesis test due to the lacking

specification of the density outside the regions of interest At. Theorem 3 reveals that this

setting nevertheless admits a UMP test, reducing to the Neyman and Pearson (1933) lemma

for w(yt) = 1, ∀t. A detailed proof of this result is deferred to Appendix A.2.

Theorem 3 (Localized Neyman-Pearson). The UMP test for testing problem (6) reads

ϕ♭
A(y) =



1, if λ(y) > c

γ if λ(y) = c

0, if λ(y) < c

λ(y) =
[f1]

♭
A(y)

[f0]♭A(y)
, [fj]

♭
A(y) =

T−1∏
t=0

[fjt]
♭
At
(yt+1),

where ϕ♭
A : YT → [0, 1] denote a test function determining which values should be included in

the critical region, j ∈ {0, 1} and c is the largest constant such that [F0]
♭
A

(
λ(y) ≥ c

)
≥ α and

[F0]
♭
A

(
λ(y) ≤ c

)
≥ 1−α, and γ ∈ [0, 1] is such that α = [F0]

♭
A

(
λ(y) > c

)
+γ[F0]

♭
A

(
λ(y) = c

)
.

We close this section with two corollaries of Theorem 3, the proofs of which are deferred

to the Online Supplementary Material. Corollary 1 reveals that, unsurprisingly, the local-

ized NP test given by Theorem 3 can alternatively be formulated by the censored likelihood
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score of Diks et al. (2011). Corollary 2 ensures that the conditional operator does not bear

a UMP test too, making the censored operator strictly preferred over the conditional one

in the current setting.

Corollary 1. Another formulation of the UMP test for testing problem (6) is given by the

test defined in Theorem 3, with λ(y) replaced by λ̃(y) =
∑T−1

t=0

(
Scsl
At
(f1t, yt+1)−Scsl

At
(f0t, yt+1)

)
,

where Scsl
At

denotes the censored likelihood score (csl) proposed by Diks et al. (2011).

Corollary 2. For testing problem (6), the test

ϕ♯
A(y) =



1, if λ♯(y) > c

γ if λ♯(y) = c

0, if λ♯(y) < c

λ♯
A(y) =

[f1]
♯
A(y)

[f0]
♯
A(y)

1A(y), [fj]
♯
A(y) =

T∏
t=1

[fjt]
♯
At
(yt),

where j ∈ {0, 1} and c is the largest constant such that [F0]
♭
A

(
λ(y) ≥ c

)
≥ α and

[F0]
♭
A

(
λ(y) ≤ c

)
≥ 1−α, and γ ∈ [0, 1] is such that α = [F0]

♭
A

(
λ(y) > c

)
+γ[F0]

♭
A

(
λ(y) = c

)
,

is not UMP.

3.5 Monte Carlo Study

Employing a simulation design similar to Diks et al. (2011), Lerch et al. (2017) and Holz-

mann and Klar (2016), simulation results in Appendix E, show the size and power properties

of the Giacomini and White (2006) test based on conditional and censored scoring rules.

This test relies on the score difference series of two candidates F and G, that is, realisations

of D = S(F, Y )− S(G, Y ), in testing the null hypothesis

H0 : EPS(F, Y ) = EPS(G, Y ),

by means of the Diebold Mariano-type statistic tT =
1
T

∑T
t=1 dt√
σ̂2
t /T

, where σ̂t should be a het-

eroskedasticity and autocorrelation-consistent (HAC) variance estimator in non-i.i.d. set-
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tings. This null hypothesis, which is equivalent to H0 : DS(P∥F) = DS(F∥G), is rejected

if it is unlikely enough that quoting F instead of P leads to the same information loss as

quoting G instead of P.

A natural conjecture is that strictly locally proper scoring rules generally lead to higher

power since they are sensible with respect to all measurable aspects of the distribution.

Yet, the dependence of the null hypothesis on the scoring rule makes the null and rejec-

tion set dependent on the scoring rule too, obstructing theoretical results like Theorem 3.

Nevertheless, the results listed in Appendix E, are clearly in favor of censoring. In the

left-tail application for a standard Normal and Student-t candidate the differences are less

monotonic than the in the other experiments due to the fact that the scores intersect by

construction by the selection of candidates. In this application, censoring is particularly

powerful for regions of interest quite far into the tail.

4 Empirical Applications

In this section, we assess the empirical impact of censoring versus conditioning by compar-

ing the MCS implied conditional and censored scoring rules, extending the power analysis

from Section 3.5. As delineated by Hansen et al. (2011), the MCS procedure expands the

GW hypothesis to larger sets of H0-equivalent methods, employing an iterative elimination

procedure using either the TR or Tmax equivalence tests. Optimal power properties of

censoring in the GW environment intuitively accelerate elimination in the MCS procedure,

resulting in smaller MCS p-values and, consequently, reduced cardinality. We present re-

sults at the 0.90 and 0.75 confidence levels, utilizing the TR statistic with a block bootstrap

with B = 10, 000 replications and block length k = 5, unless stated otherwise. Our results

are robust to variations in these parameters. When CRPS♭ and twCRPS differ, we include
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twCRPS for reference. We quantify differences in cardinality in absolute terms, framed as

the proportion of cases wherein the number of methods in MCS♭ is strictly smaller and

larger than MCS♯. Additionally, we provide the factor by which the cardinality of the MCS

expands when a conditioning is adopted in lieu of censoring.

4.1 Risk management

Evaluating the downside risk of asset returns is a crucial task in risk management, par-

ticularly for compliance with regulatory requirements related to risk measures like the

Value-at-Risk (VaRq

f̂t
), which represents the q-th quantile of the model-based estimated

density forecast f̂t and the more recently mandated Expected Shortfall ESq

f̂t
, which quan-

tifies expected losses conditional on those losses exceeding VaRq

f̂t
. To achieve this, we opt

for a weight function of wt(yt) = 1(−∞,rqt )
(yt) and choose for the variable of interest yt the

log-returns of the S&P500, that is, yt = log(Pt/Pt−1), where Pt is the adjusted closing price

on day t. The dataset used for this study consists of 6,777 observations in total, spanning

from January 2, 1996, to December 30, 2022, sourced from Yahoo Finance.

All selected forecasting methods conform to Yt|Ft−1 ∼ D(µ, σ2
t ,ϑ), denoting a paramet-

ric family of distributions with mean µ, variance σ2
t and other parameters ϑ. While we

evaluated AR(1) and AR(5) models for the conditional mean, they did not yield significant

improvements over a constant mean specification. We consider two conditional variance

models: the GARCH(1,1) model by Bollerslev (1987), defined as

σ2
t = ω + α(yt − µ)2 + βσ2

t−1, (7)
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and the RGARCH(1,1) model proposed by Hansen et al. (2012), given by

σ2
t = ω + αxt−1 + βσ2

t−1,

xt = ξ + ϕσ2
t + τzt + κ(z2t − 1) + ut,

where xt represents the realized measure, zt = (yt − µ)/σt and ut denotes a white noise

process with variance σ2
u. The realized measure is downloaded from the Risklab page of

Dacheng Xiu’s website: dachxiu.chicagobooth.edu/#risklab. Parameters are estimated

via maximum likelihood on a rolling window of length Test = 1, 000.

Table 3 summarizes the cardinality differences of MCS♭ and MCS♯, revealing stark

differences, particularly for h = 1. At a 0.90 confidence level and h = 1, MCS♯ is smaller

in only one case across the examined quantiles and scoring rules, namely for q = 0.25 and

S = QS, (see Table F.1.b). Equality in MCS size occurs mainly for higher quantile values,

where information scarcity with respect to the distributions on (−∞, rqt ) is less critical.

For h = 1, MCS♯ contains more than twice the number of methods compared to MCS♭ on

average. For h = 5, the differential reduces but remains substantial, averaging around a

factor 1.7. This attenuation in differences from h = 1 to h = 5 is largely attributed to the

enhanced performance of CRPS♯ relative to CRPS♭, except for q = 0.15.

Examining the composition of the MCS reveals that the censored MCS is often a subset

of the conditional MCS, when |MCS♭| ≤ |MCS♯|. The significance of reductions due to

censoring is further emphasised by the fact that the resulting MCS encompass more complex

model specifications, which would be the optimal choices in the absence of parameter and

forecasting uncertainty. Robustness checks, pertaining to k and Test confirm the stability

with respect to these parameters (see Table F.1.b). Additionally, the use of the TR statistic

tends to expedite model elimination, yielding smaller MCS p-values compared to Tmax;

this acceleration, however, is consistent across both censoring and conditioning.
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Table 3: Changes in MCS cardinality between censored and conditional scoring rules.

Tail(s) Interval

|MCS0.90| |MCS0.75| |MCS0.90| |MCS0.75|

h < > Ratio < > Ratio < > Rel. < > Ratio

Risk Management

1 71% 4% 2.28 63% 8% 2.04

5 38% 25% 1.69 50% 42% 1.72

Inflation

6 92% 0% 2.00 83% 8% 2.93 83% 0% 2.56 100% 0% 3.06

12 50% 25% 1.86 58% 33% 2.38 50% 25% 2.38 58% 33% 2.75

24 75% 8% 2.86 58% 8% 3.31 67% 0% 2.31 92% 0% 3.27

Climate

1 54% 17% 2.67 63% 13% 2.41 42% 8% 1.50 42% 17% 1.46

2 54% 4% 1.67 46% 4% 1.55 67% 0% 1.67 58% 0% 1.58

3 42% 21% 1.36 38% 17% 1.38 58% 0% 1.58 25% 0% 1.25

NOTE: The table presents changes in cardinality of the MCS in absolute and relative terms, at confidence

level 0.75 and 0.90, across different forecast horizons h, based on B = 10, 000 bootstrap replications, with

block length k = 5, or k = 200 for climate data. Columns labeled < (>) display the percentage of cases

where MCS♭ contains strictly fewer (more) forecasting methods than MCS♯, averaged over a set of levels

or quantiles q and scoring rules S ∈ {LogS,QS,SphS,CRPS}. The “Ratio” column reports the factor

|MCS♯|/|MCS♭|. Specifically, the regions of interest for inflation are defined as Aq = [2 − q, 2 + q] and its

complement, where q ∈ {1, 2, 3}. For the climate data, Aq = (rq,∞), where rq is the empirical q-th quantile

of the estimation window, with q ∈ {0.75, 0.80, 0.85, 0.90, 0.95, 0.99} or Aq = [18−q, 18+q] for q ∈ {1, 2, 4}.

Complete MCS details and associated p values are provided in Appendix F of the Supplementary Material.

Bolded numbers indicate strictly smaller (< and Ratio column) or larger (> column) MCS♭.
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Beyond the statistical assessment of forecast methods, we compute their 1- and 5-step

ahead Value at Risk (VaRq

f̂t
) and Expected Shortfall (ESq

f̂t
). These measures provide only

partial insight into the forecasts, since the tail component of the density forecast carries

more comprehensive information than a single quantile (VaRq

f̂t
) or conditional moment

ESq

f̂t
= Ef̂t

(
Yt+h|Yt+h ≤ VaRq

f̂t

)
. Notably, the conditioning in ESq

f̂t
is a quantile of the

density forecast itself rather than r̂qt , a.s. implying a discrepancy between the operational

region of ESq

f̂t
and the focused scoring rules introduced above. Additionally, if the VaRq

f̂t

is quite off, then the ‘risk’ indicated by ESq

f̂t
can become quite detached from the true risk

ESq
p, where p denotes the density of the DGP. Hence, the ESq

f̂t
is (particularly) useful when

the VaRq

f̂t
is accurate, i.e. we preferably have a good fit for the pair (VaRq

f̂t
,ESq

f̂t
), rather

than just ESq

f̂t
itself.

We highlight a corollary before discussing results. Given a fixed level q, let r be such

that VaRq

f̂t
∨VaRpq ≤ r. A property of the censored scoring rule is its ability to render the

true (VaRq
p,ES

q
p) pair, since

DS♭
w
(p∥f) = 0 =⇒ (VaRq

p,ES
q
p) = (VaRq

f̂t
,ESq

f̂t
), (8)

where w(y) = 1(−∞,r)(y). This is a direct consequence of (3), i.e. another corollary of

Lemma 1, and holds also more generally for any functional on distributions on {w > 0}.

In (sharp) contrast, DS♯
w
(p∥f) = 0 implies that p ∝ f on (−∞, r) and hence (VaRq

p,ES
q
p) ̸=

(VaRq

f̂t
,ESq

f̂t
), unless F̄w = P̄w. Therefore, model selection based on censored scoring rules

aligns more effectively with backtesting of functionals of the distribution compared to model

selection based on conditional scoring rules.

Thus, censoring is designed to generate MCS containing forecast models that produce

(VaRq

f̂t
,ESq

f̂t
) pairs closer to the true pair. Support for this conjecture is found in Ta-

ble F.1.b. Despite often being smaller, the censored MCS contains well-fitted (VaRq

f̂t
,ESq

f̂t
)
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pairs, defined as 0% mismatches for both VaR and ES, more than twice as often (9 versus

4). If we accept up to 4% mismatches, the comparison remains favorable: 14 versus 6, en-

dorsing censored MCS as a superior selection mechanism prior to VaR and ES calculations.

4.2 Inflation

In our second case, we focus on forecasting inflation, a subject recently magnified in the

literature. Guided by the European Central Bank’s target of 2% (ecb.europa.eu/mopo),

we center our study on the range Aq = [2 − q, 2 + q], where q > 0, employing the weight

function w(yt) = 1Aq(yt). Simultaneously, we consider policymakers’ concerns for devia-

tions beyond A, termed ‘Inflation at Risk’ (Lopez-Salido and Loria, 2022), utilizing the

complement weight function w(yt) = 1Ac
q
(yt).

While the evaluation ingredients remain almost exactly the same, the unique char-

acteristics of the inflation time series necessitate an adapted set of forecasting methods.

We closely align with the methodology presented by Medeiros et al. (2021), using the

same 122 variables from the FRED-MD database (xt), spanning January 1960 to Decem-

ber 2015. This timeframe encompasses a total of 672 observations, with the final 180

being out-of-sample relative to the initial estimation window. While using the same base-

line data Pt = CPIt as Medeiros et al. (2021), we follow Stock and Watson (2002) and

Borup et al. (2022) by analyzing the h-step ahead forecasts of the accumulated series

yht+h = (1200/h) log
(
Pt+h/Pt

)
, instead of the accumulation of the individual h-step ahead

forecasts of the monthly rate. This direct approach is standard in the literature and espe-

cially advantageous for density forecasts, as accumulating densities is more complex than

aggregating point forecasts.
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Each of the forecasting methods under consideration can be represented as

yht+h = µh
j,t+h(xt) + uh

t+h, uh
t+h|Ft ∼ NTP(0, σ1, σ2), σ1, σ2 > 0,

where NTP(0, σ1, σ2) denotes the two-piece normal distribution distribution. For the condi-

tional mean µh
j,t+h, we take the following subset of models listed by Medeiros et al. (2021):

RandomWalk, Auto-Regressive model (AR), Bagging, Complete Subset Regression (CSR),

Least Absolute Shrinkage and Selection Operator (LASSO), and Random Forest models.

The implementation specifics of these models are elaborated upon in Section 4 of Medeiros

et al. (2021). The density of the two-piece normal distribution reads

f(y;µ, σ1, σ2) =
2

σ1 + σ2

(
ϕ

(
y − µ

σ1

)
1y<µ + ϕ

(
y − µ

σ2

)
1y≥µ

)
, σ1, σ2 > 0,

where ϕ(z) denotes the density of the standard normal distribution. This distributional

choice is congruent with the underlying statistical model employed in the fan charts pub-

lished by the Monetary Policy Committee of the Bank of England (Clements, 2004; Mitchell

and Hall, 2005; Gneiting and Ranjan, 2011).

The summary results presented in Table 3 show the difference between the cardinality

of the MCS♭ and MCS♯, averaged over q ∈ {1, 1.5, 2}. A glance at Table 3 reveals a

distinct and pronounced preference for censoring. Notably, the cardinalities of MCS♭ are

generally –with ‘generally’ here not seldom verging on unanimity– smaller than those of

MCS♯. This is especially salient in the Center case, where the MCS♭ are almost always

weakly smaller than the corresponding MCS♯. While it is unsurprising, given these results,

that the relative increase in set cardinality when opting for conditioning over censoring is

positive, the specific magnitudes of these increases even (substantially) exceed 100%. This

is a striking finding: it effectively indicates that MCS♯ consistently encompasses more than

twice the number of methods compared to MCS♭, thereby making any defence of the use

of MCS♯ tenuous at best.
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The differences between the MCS variants are clearly highlighted by the p-values pre-

sented in Table F.2.b, which also offers more detailed insights. To begin, for q = 1 the

cardinality of MCS♯
0.90 consistently exceeds or equals that of MCS♭

0.90 with the sole excep-

tions occurring in tail cases predicated on the CRPS for h = 12 and h = 24, and QS for

h = 12. These exceptions feature a marginal difference of one. At a confidence level of

0.75, a similar trend is observed, albeit without the QS exception the tail case but with

two additional exceptions for the center case at h = 12 in both the QS and CRPS rules.

Finally, a closer look at the differences between the twCRPS and CRPS♭ is in place.

In the Center panel, we observe that the CRPS♭ is quite competitive with the twCRPS,

leading to preferable MCS sizes for h = 6 and h = 24 (particularly for h = 24), but not

for h = 12. Instances yielding comparable scores can be understood by recalling that the

twCRPS and CRPS♭ coincide when the distribution of the remaining probability F̄w based

on the ratio implied by the empirical distribution, aligns with that of the candidate-implied

ratio. This is different for the tails case, where observations falling outside the interval [1,3]

are censored to a value of 2. In the current example, the adopted method of censoring

does not manifest in enhanced discriminating ability, as suggested by the more favorable

p-values associated with twCRPS.

4.3 Climate

In our third application, we generate density forecasts for Dutch daily average temperature

data, extending the data and methodology of Franses et al. (2001) and Tol (1996). We

maintain focus on volatility clustering and changing asymmetries in past temperature to

volatility relations, along with accounting for seasonal variations in the mean and variance.

Our data set, spanning February 1, 2003, to January 31, 2023, uses daily observations rather
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than weekly averages. The first Test = 2922 days form the initial rolling estimation window.

Our models closely follow the GARCH, QGARCH-I, and QGARCH-II specifications as

in Franses et al. (2001), but with alterations in seasonal trend estimation. Specifically,

we use local day averages for the mean and a sine function for volatility, as opposed to

a quadratic function. The models can be formalized as: Yt|Ft−1 ∼ D(µt, σ
2
t ,ϑ), where

µt = mt|t−1 + ϕyt−1 and

σ2
t = φ(t;ω0, ω1) + α

(
yt−1 − µt−1 − φ(t; γ0, γ1)

)
+ βσ2

t−1,

Here,mt|t−1 is the day’s local average temperature in the estimation window and φ(t; θ0, θ1) =

θ0 + θ1 sin(π/365 · T̃t), with T̃t = min(Tt, 365), where Tt is the day number, with Tt = 1

on the first of February. For GARCH, QGARCH-I, and QGARCH-II, the restrictions are

γ0 = γ1 = 0, γ1 = 0 and no restrictions, respectively. These models are combined with

both Normal and Student-t distributions to produce six forecasting methods.

The summary findings are presented in Table 3, with an emphasis on the right tail

(rqt ,∞) and the interval [18 − q, 18 + q]. The latter interval has its roots in the agricul-

tural literature, corresponding to the optimal temperature for tuber growth, agreed to be

approximately 18 degrees Celsius (Struik, 2007, Section 18.5.5). Across both panels, the

analyses demonstrate a clear preference for censoring methods, particularly for lower val-

ues of h. Consistent with the inflation scenario, the interval-based analyses yield the most

unequivocal results: for h = 2 and h = 3, none of twelve MCS favor conditioning and for

h = 1 only one or two.

5 Conclusion

In many applications, forecasters are particularly interested in particular areas of the out-

come space. Addressing this, we champion censoring as focusing device, demonstrating
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that applying scoring rules to censored distributions results in strictly locally proper scor-

ing rules. To the best of our knowledge, we are the first to derive a transformation of the

original scoring rule that preserves strict propriety. Our approach stands out in its flex-

ibility, applicable across varied scoring rules, weight functions, and outcome spaces. For

specific choices, the censored scoring rule yields intuitively appealing rules apt for practical

use. For instance, applying our approach to the logarithmic scoring rule results in the

well-established censored likelihood score. We accord specific attention to the censored

CRPS, emerging as a strictly locally proper alternative to the twCRPS. Conveniently, the

censored CRPS reduces to the twCRPS for left and right tail indicators, which are the only

weight functions for which the twCRPS is established to be strictly locally proper.

Our second theoretical contribution, a generalization of the famous Neyman Pearson

lemma, revolves around the censored likelihood score. We have shown that the UMP test of

the localized Neyman Pearson hypothesis is a censored likelihood ratio test, reducing to the

original lemma if the weight function is one for all outcomes. In contrast, the conditional

likelihood ratio test is not UMP. Monte Carlo simulations incorporate the Giacomini and

White test to assess the power properties of conditional versus censored scoring rules based

on the score differences between two candidates. The findings endorse the superior power

properties of censoring, extending beyond the stylised scenario in which the candidates’

tails are close to proportional. Both conditional and censored scoring rules maintain size

correctness.

In the empirical analysis, we use the size of the Model Confidence Set (MCS) as an

indicator of power. Notably, in our inflation example –where the number of observations

is characteristically low, akin to many macro-applications– the frequency with which the

censored MCS is strictly smaller than the conditional MCS strikes, as does the difference
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in cardinality. These observations hold across different horizons, whether centered on the

2% target or its complement. In density forecast assessments of the S&P500, a comparable

trend emerges, though the difference narrows at h = 5. The application to climate data

corroborates the enhanced power of the censored approach, revealing that one could better

not entirely forget about the winter when growing potatoes.

SUPPLEMENTARY MATERIAL

All proofs, additional lemmas, tables and figures are made available in the supplemen-

tary document.
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