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Abstract

When comparing predictive distributions, forecasters are typically not equally in-
terested in all regions of the outcome space. To address the demand for focused fore-
cast evaluation, we propose a procedure to transform strictly proper scoring rules into
their localized counterparts while preserving strict propriety. This is accomplished
by applying the original scoring rule to a censored distribution, acknowledging that
censoring emerges as a natural localization device due to its ability to retain pre-
cisely all relevant information of the original distribution. Our procedure nests the
censored likelihood score as a special case. Among a multitude of others, it also
implies a class of censored kernel scores that offers a multivariate alternative to the
threshold weighted Continuously Ranked Probability Score (twCRPS), extending its
local propriety to more general weight functions than single tail indicators. Within
this localized framework, we obtain a generalization of the Neyman Pearson lemma,
establishing the censored likelihood ratio test as uniformly most powerful. For other
tests of localized equal predictive performance, results of Monte Carlo simulations
and empirical applications to risk management, inflation and climate data consis-
tently emphasize the superior power properties of censoring.

Keywords: Density forecast evaluation; Tests for equal predictive ability; Censoring; Like-
lihood ratio; CRPS.

1 INTRODUCTION

Over the past decades, probabilistic forecasts have garnered increasing attention across a

variety of disciplines, primarily because they provide a more comprehensive understanding

of the stochastic nature of a random variable under scrutiny than point forecasts (Dawid

1984). A cornerstone for the effective evaluation of such probabilistic forecasts is the

use of strictly proper scoring rules (Gneiting and Raftery 2007; Brehmer and Gneiting

2020; Patton 2020), which have been widely advocated for their ability to ensure fair

comparative assessments of different forecast methods. While the usefulness of regular

probabilistic forecasting is well-recognized and well-understood, various applications, such

as the assessment of large financial portfolio losses, inflation targets or temperature ranges,

require a focused, localized evaluation of predictive distributions.

In this paper, we introduce a natural localization mechanism for strictly proper scoring

rules that preserves strict propriety. By censoring (Bernoulli 1760; Tobin 1958) the ob-
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servation and distribution before applying the original scoring rule, we find a sweet spot

between retaining and discarding information when focusing the original distribution to

a region of interest. Specifically, unlike existing approaches that employ conditional dis-

tributions, our method preserves the overall probability of receiving an observation in (or

outside) the target region, obviously relevant when comparing various candidate distribu-

tions focused on the same area. Moreover, within the region of interest, our mechanism

replicates the original distribution’s shape, which is particularly beneficial when evaluating

functionals specific to this region, like quantiles or conditional expectations. Our procedure

can be used to generate a multitude of strictly locally proper scoring rules. These include

as special cases the censored likelihood (CSL) score, proposed by Diks et al. (2011), and

the threshold weighted Continuously Ranked Probability Score (twCRPS), proposed by

Gneiting and Ranjan (2011), for weight functions for which Holzmann and Klar (2017a)

have shown that the twCRPS is strictly locally proper. On the other hand, for weight

functions for which the twCRPS is not strictly locally proper, our analysis delineates the

adverse consequences arising from this failure in localization, and provides a strictly locally

proper alternative.

The additional information retained by our censoring approach also translates into ad-

vantageous power properties of tests aimed to compare density forecasts on regions of in-

terest. We prove a generalization of the Neyman Pearson (1933) lemma, revealing that the

censored likelihood ratio leads to a Uniformly Most Powerful (UMP) test. By contrast, we

provide explicit evidence that the conditional likelihood (CL) score does not admit a UMP

test. Monte Carlo simulations and empirical applications analyze the power properties of

the Diebold and Mariano (2002) (DM) type test statistic, within the framework of Gia-

comini and White (2006), based on conditional vis-à-vis censored scoring rules. Censored
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scoring rules enhance power in all three Monte Carlo experiments we have conducted. Sub-

stantial spurious power is observed solely for conditional scoring rules, which also falter in

terms of power when tails become proportional. In multiple empirical experiments, which

span financial, macroeconomic and climate data, we integrate the DM tests into the Model

Confidence Set (MCS) as proposed by Hansen et al. (2011). The MCSs resulting from cen-

sored scoring rules are typically much smaller than their conditional counterparts, aligning

with the power enhancements due to censoring displayed by the Monte Carlo results.

Our research contributes to the literature on focused scoring rules, initiated by the

weighted likelihood score of Amisano and Giacomini (2007). Diks et al. (2011) and Gneit-

ing and Ranjan (2011) sought to correct the (regular) impropriety of this scoring rule by

introducing the CL, CSL and twCRPS, respectively. Holzmann and Klar (2017a) substan-

tially advanced focused scoring rules, by generalizing the case of the CL score to construct

proportionally locally proper scoring rules, based on conditioning, from regular scoring rules

other than the logarithmic scoring rule. They also show that strict local propriety of the

ensuing scoring rules can be restored by adding an auxiliary weighted scoring rule, based

on an arbitrary strictly proper scoring rule for the probability of an observation landing

in the region of interest. Our work differs importantly from theirs by opting for censoring

rather than conditioning as localization mechanism. Through censoring, we enable the

direct application of the original scoring rule to the localized measure, thereby avoiding the

introduction of an auxiliary scoring rule and preserving the original Bregman divergence.

As detailed by Brehmer and Gneiting (2020, Theorem 1), the conditional scoring rules of

Holzmann and Klar (2017a) can also be viewed as an extension of the weighted likelihood

score refined through a ‘properization’ process. Consequently, properization is not a viable

mechanism for retaining strict propriety of the original scoring rule.
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Our research also rests upon a substantial body of research concerning regular strictly

proper scoring rules and their associated divergence measures. While the formalization

of strict propriety was rigorously achieved by Gneiting and Raftery (2007), scoring rules

satisfying this property date back to at least the Quadratic Scoring rule of Brier (1950).

Literature in this domain has evolved from an initial focus on discrete settings to a more

general treatment. In this vein, we rely on the expanded frameworks of the Power (PowSα)

and PseudoSpherical (PsSphSα) families as advocated by Gneiting and Raftery (2007) and

Ovcharov (2018) rather than their discrete foundations and refer to Gneiting and Raftery

(2007) for foundational references. Additionally, scoring rules are inherently connected with

divergence measures; under the restriction of strict propriety, these measures are subsumed

under Bregman divergences (Dawid 2007; Ovcharov 2018; Painsky and Wornell 2020).

This effectively excludes f -divergences other than Kullback-Leibler divergence (Kullback

and Leibler 1951), distinguished for its favorable properties (Liese and Vajda 2006).

Interest in targeting specific regions of predictive distributions has surged across diverse

fields, underscored by analyses of extreme events in disciplines such as meteorology, clima-

tology, hydrology, finance, and economics (Lerch et al. 2017). In financial risk management,

attention is particularly concentrated on the left tail of return distributions, conforming

to mandated risk metrics like Value-at-Risk and Expected Shortfall (Cont et al. 2010;

Fissler et al. 2015). Analogously, in macroeconomics, concepts such as ‘Inflation-at-Risk’

and ‘Growth-at-Risk’ are emerging, signifying values that deviate significantly from bench-

marks established by institutions like Central Banks (Adrian et al. 2019; Lopez-Salido

and Loria 2020; Iacopini et al. 2023). In other scenarios, the emphasis might rest on the

central region or on another specific region of the distribution, often dictated by external

constraints or objectives. Examples range from optimizing growing conditions for specific
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crops like tubers, to calibrating wind speeds for peak wind turbine performance, and regu-

lating blood sugar levels for effective diabetes management. They necessitate region-specific

performance evaluations aligned with the interest in particular outcomes. Accordingly, as

illustrated by Lerch et al. (2017), it is crucial to distinguish between strict propriety and

strict local propriety; failing to do so can result in misleading forecast results.

This paper is organized as follows. Section 2 provides the foundational concepts essential

for the subsequent analysis. Section 3 introduces the Censored Scoring Rule and establishes

its strict local propriety. This section also introduces the Z-Q-Randomization procedure,

proven to be equivalent to the Censored Scoring Rule, and showcases a variety of examples.

It concludes with a generalization of the Neyman Pearson lemma and the main results of the

simulation study. Section 4 discusses the empirical performance of our approach. Section 5

concludes. In accompanying Supplementary Material, we provide the proofs of our results,

derivations of the theoretical properties tabulated in Section 3, extensive details of the

Monte Carlo study, and full tables underlying the performance reported in Section 4.

2 SCORING RULES

2.1 Regular scoring rules

Consider a random variable Y : Ω → Y from a complete probability space (Ω,F ,P) to a

measurable space (Y ,G). Denote by P a convex class of probability distributions on (Y ,G).

A scoring rule S assigns numerical values (scores) to observations y ∈ Y and distributions

F ∈ P , through a mapping S : P × Y → R ∪ {−∞} =: R̄. Following Holzmann and

Klar (2017a), we assume that a scoring rule S is measurable with respect to G and quasi-

integrable with respect to all P ∈ P , for all F ∈ P , and such that EPS(F, Y ) < ∞
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and EPS(P, Y ) ∈ R,∀P,F ∈ P . The latter condition guarantees that the score divergence,

DS(P∥F) := EPS(P, Y )−EPS(F, Y ), exists, and maps onto (−∞,∞]. Adhering to Gneiting

and Raftery (2007), a minimal requirement for S is that it is strictly proper.

Definition 1 (Strictly proper scoring rule). A scoring rule S : P×Y → R̄ is proper relative

to P if DS(P∥F) ≥ 0, ∀P,F ∈ P, and strictly proper if, additionally, DS(P∥F) = 0 if and

only if P = F, ∀P,F ∈ P.

Equivalently, a score divergence is a divergence measure (see e.g., Eguchi, 1985) if and

only if S is strictly proper. For distributions on
(
Rd,B

(
Rd

))
, where B(Y) denotes the Borel

σ-algebra on Y , this divergence is known to be a Bregman (1967) divergence under the con-

ditions listed by Ovcharov (2018). Two remarks are in place. First, distributions F ∈ P are

compared in terms of their P-expected score differences, whence it follows that uniqueness

of members in P should formally be interpreted in terms of P-a.s. equivalence classes of P.

For ease of exposition, we omit technicalities about P-a.s. equivalence throughout. Second,

if there exists a σ-finite measure µ such that F ≪ µ, ∀F ∈ P , with ≪ denoting absolute

continuity, then scoring rules and associated definitions and results can easily be formu-

lated relative to the class of induced µ-densities f = dF
dµ
, also denoted by P , like classes of

distributions functions F .

Gneiting and Raftery (2007) provide an extensive list of strictly proper scoring rules,

which can be divided into local scoring rules and distance-sensitive scoring rules (Ehm and

Gneiting 2012). We use the same distinction when discussing examples, yet allowing local

scoring rules to also depend on the density via a global norm of the density, and refer

to them henceforth as semi-local. In this subcategory, our focus lies on the Logarithmic

(LogS), Quadratic (QS) and Spherical (SphS) scoring rules, along with their extensions

to the Power (PowSα) and PseudoSpherical (PsSphSα) families. Our choice of distance-
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sensitive scoring rules is confined to the Energy Scores (ES) subfamily, a subclass of the

class of strictly proper scoring rules given by Theorem 5 of Gneiting and Raftery (2007),

nesting the real-valued Continuously Ranked Probability Score (CRPS) as a special case.

2.2 Weighted scoring rules

Example 1 (The need to focus). Let Y be a random variable that follows a piecewise uni-

form distribution across the intervals A = [0, 1), B = [1, 2) and C = [2, 3], with probabilities

πA, πB and πC, respectively. Figure 1 displays the densities and distribution functions of

the true distribution P and two candidates F and G. Consider the CRPS, which is strictly

proper and has score divergence DCRPS(F||G) =
∫ 3

0

(
F (s)−G(s)

)2
ds. From the right panel

of Figure 1 it is apparent that DCRPS(P||F) > DCRPS(P||G). However, if only observations

in B are pertinent, the ranking induced by DCRPS fails because F coincides with P on B,

that is, P(E ∩B) = F(E ∩B),∀E ∈ G, in contrast to G.

y
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Figure 1: Densities (left) and distribution functions (right) of distributions F, G and true dis-
tribution P, all piecewise uniformly distributed on [0, 3] but with different probabilities π :=
(πA, πB , πC)

′. Specifically, πp = (1/5, 2/5, 2/5)′, πf = (2/5, 2/5, 1/5)′ and πg = (1/5, 3/5, 1/5)′.

As demonstrated by Example 1, it is imperative to adapt the scoring rule when partic-

ular outcomes are of importance. Otherwise, an excellent fit in non-critical regions of the
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outcome space may obscure a poor fit in regions of actual relevance. Modeling the relative

importance of outcomes y ∈ Y by a weight function w ∈ W , with W consisting of all

G-measurable mappings w : Y → [0, 1], the question arises how to transform the original

scoring rule S given this weight function. We concur with the arguments put forward by

Holzmann and Klar (2017a) that the weighted scoring rule, Sw, must be localizing. Specif-

ically, for all outcomes, the variation in Sw should be solely dependent on changes in the

distribution within the region of interest {w > 0} := {y ∈ Y : w(y) > 0}; see Definition 2.

Definition 2 (Localizing weighted scoring rule). A weighted scoring rule Sw, that is, a

map S· : P × Y ×W → R̄ such that Sw(·, ·) is a scoring rule for each w ∈ W, is localizing

if for any P, F ∈ P, w ∈ W, it holds that

∀E ∈ G : P({w > 0} ∩ E) = F({w > 0} ∩ E) =⇒ Sw(P, y) = Sw(F, y), ∀y ∈ Y .

If a weighted scoring rule is non-localizing, this may cause what we refer to as a local-

ization bias, as illustrated by Example 2.

Example 2 (Localization bias). Revisit Example 1. Suppose that the region of interest

is B, with corresponding weight function w(y) = 1B(y). A prevalent weighted version

of the CRPS is given by twCRPS(F, y) =
∫
B

(
F (s) − 1[y,∞)(s)

)2
ds, with score divergence

DtwCRPS(P∥F) =
∫
B

(
F (s) − G(s)

)2
ds; see Gneiting and Ranjan (2011). This weighted

variant of the CRPS is clearly non-localizing, for instance, because its value is influenced

by F(A), while F(A) is not implied by F(B), only the sum F(A) + F(C) is. Consequently,

the scoring rule depends on the distribution F outside B in a way that is not implied by F

restricted to B. Its failure to be localizing introduces a bias in evaluating distributions over

the region B. Indeed, by accounting for behavior of F and G on A (i.e., outside B) where

G is closer to P than F (see Figure 1), the twCRPS inappropriately favors G on B.
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Example 3 (Improper localizing weighted scoring rule). We examine the weighted like-

lihood score wl(f, y) = log f(y)1B(y) proposed by Amisano and Giacomini (2007), in

the context of Example 1. Although the unweighted logarithmic scoring rule is strictly

proper and the weighted likelihood score is localizing, it is not locally proper, and still in-

appropriately favors G. Specifically, we have log g(y) > log p(y), ∀y ∈ B, which implies

Dwl(P∥P) > Dwl(P∥G).

Example 3 illustrates that localizing versions of strictly proper scoring rules are not

automatically proper for all weight functions. In light of this, we focus on the subclass of

localizing scoring rules that maintain this property. By construction, a localizing weighted

scoring rule cannot be strictly proper unless w(y) > 0,∀y ∈ Y . This is because any

distribution P̃ equivalent to P on {w > 0} but different on {w = 0} will receive an

identical score. Nonetheless, as illustrated by Example 4 below, some notion of local

strictness remains advantageous. As recalled in the example, this is not achieved by the

family of weighted scoring rules

S♯
w(F, y) := w(y)S(F♯

w, y), dF♯
w :=

1

1− F̄w

dFw, (1)

analyzed in detail by Holzmann and Klar (2017a), where S is a regular scoring rule, dFw :=

wdF is the weighted kernel of distribution F and F̄w =
∫
Y(1− w)dF. For indicator weight

functions, F♯
w simplifies to a conditional distribution on the region of interest. Henceforth,

we refer to S♯
w as a conditional scoring rule for general weight functions.

Example 4 (Proportionally locally proper). Consider the weighted scoring rule S♯
w(F, y)

in Equation (1). This scoring rule is localizing and proper for weight functions for which

it remains a scoring rule (see Section 2.1). Yet, when revisiting Example 1 with w(y) =

1B(y), we have that S♯
B(F, y) = S♯

B(G, y) = S♯
B(P, y),∀y ∈ B, since S♯

w cannot discrim-

inate between distributions that are proportional to each other on {w > 0}. Accordingly,
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DS♯
B
(P∥F) = DS♯

B
(P∥G) = 0, while only F coincides with P on B. In other words, the score

divergence DS♯
B
of a candidate distribution and P is properly zero if, but not only if, the

candidate coincides with P on B, as is the case for F.

Motivated by Examples 2, 3 and 4, this paper posits the necessity for weighted scoring

rules to be strictly locally proper, as articulated in Definition 3. Compared to the defini-

tion of strict propriety (Definition 1), strictness is only required locally. More precisely,

equivalent distributions on {w > 0} must have weighted score divergence zero and, vice

versa, distributions at zero weighted score divergence of each other must be equivalent on

{w > 0}, the latter ruling out the ambiguities highlighted in Example 4.

Definition 3 (Strictly locally proper scoring rule). A weighted scoring rule S· : P × Y ×

W → R̄ is locally proper relative to (P ,W) if it is localizing and Sw(·, ·) is proper for each

w ∈ W. Furthermore, it is strictly locally proper relative to (P ,W) if, additionally,

P({w > 0} ∩ E) = F({w > 0} ∩ E), ∀E ∈ G ⇐⇒ DSw(P∥F) = 0, ∀w ∈ W .

3 THE CENSORED SCORING RULE

To overcome issues such as the non-locality and non-strictness of the weighted scoring rules

discussed above, we propose to use censoring as focusing mechanism. Censoring (Bernoulli

1760) refers to the statistical concept used to model a variable under scrutiny whose value,

upon measurement or observation, is only partially known (Tobin 1958). More formally,

under censoring, for realizations of a random variable Y that occur in Ac, the complement

of some A ⊆ Y , it is only known that they are not in A. Realizations in Ac are hence

indistinguishable under censoring and ‘Ac’ may therefore be viewed as a single realization

of the censored random variable. To avoid confusion, we label realizations in Ac by ‘∗’
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rather than ‘Ac’ itself, which is nothing but an abstract event, interchangeable with ‘NaN’.

To facilitate censoring mathematically, we let Y and G both contain ‘∗’ and set F(∗) = 0,

∀F ∈ P , the latter rendering a choice for w(∗) ∈ [0, 1] irrelevant. So, if one has some

random variable on a measurable space (X ,A) in mind, this measurable space is extended

to (Y ,G) =
(
X∪{∗}, σ({A, ∗})

)
, where σ({A, ∗}) denotes the smallest σ-algebra containing

the collection {A, ∗}. The censored random variable

Y ♭
A :=


Y, Y ∈ A,

∗, Y ∈ Ac,

then defines a map from a probability space (Y ,G,F) to (Y ,G), ∀F ∈ P . Similar to the

conditional distribution in Example 4, we extend the definition of the distribution of Y ♭
A

from indicator functions w(y) = 1A(y) to general weight functions w ∈ W . Specifically, we

define the censored distribution as

dF♭
w := dFw + F̄wdδ∗, F̄w =

∫
Y
(1− w)dF, w ∈ W , F ∈ P , (2)

where δ∗ denotes the Dirac measure at ∗, i.e., δ∗(E) = 1E(∗).

In case F ≪ µ,∀F ∈ P , we may work with the µ-densities f ∈ P instead, and their

associated (µ+ δ∗)-densities

f ♭
w = wf1y ̸=∗ + F̄w1y=∗, w ∈ W , f ∈ P . (3)

A detailed proof of this result is deferred to Appendix B.1. Borowska et al. (2020) also

work with an explicit formulation of the censored density, albeit restricted to w(y) = 1A(y),

coinciding with f ♭
A, in the context of maximum likelihood. To ease notation, we adopt the

subscript A instead of 1A when referencing indicator functions. The symbols ‘sharp’ (♯)

and ‘flat’ (♭) reflect their respective operations: conditioning sharpens the density on A by

a factor 1/(1− F̄w), whereas censoring flattens the shape outside A into a point mass.
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3.1 Censored scoring

Ideally, the censored scoring rule would be given by

S♭
A(F, y) = S(F♭

A, y
♭
A), (4)

as this would fully respect the forecaster’s specific choice of the regular scoring rule S. The

censored scoring rule given by Definition 4 below reduces to this definition for the indicator

weight function w(y) = 1A(y). The censored scoring rule is also attractive for general weight

functions. This will be particularly clear from the randomization perspective provided in

Section 3.2, which yields a similar identity for general weight functions; see Equation (6).

Definition 4 (Censored scoring rule). Let S : P♭ × Y → R̄, P♭ = {F♭
w,F ∈ P , w ∈ W},

denote a regular scoring rule. Then, the corresponding censored scoring rule is given by the

map S♭
· : P × Y ×W → R̄,

S♭
w(F, y) := w(y)S(F♭

w, y) +
(
1− w(y)

)
S(F♭

w, ∗),

where the censored distribution F♭
w is defined in Equation (2).

Theorem 1 establishes that the censored scoring rule is strictly locally proper.

Theorem 1. Suppose that the regular scoring rule S is strictly proper relative to P♭. Then,

the censored scoring rule S♭ in Definition 4 is strictly locally proper relative to (P ,W).

Theorem 1 is a special case of the more general Theorem 2 below, hence its proof is

subsumed in the proof of Theorem 2. The assumption imposed in Theorem 1 ensures that

the regular scoring rule is well-defined with respect to mixed continuous-discrete distribu-

tions on measurable spaces extended by ‘∗’. In Subsection 3.3, we will verify that this

assumption holds in the examples discussed.
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Let us provide some intuition for the result of Theorem 1. Given some weight function

w ∈ W , it is clear that censoring maintains a one-to-one correspondence with the original

distribution on {w > 0}. This correspondence is invalidated by conditioning due to the

additional normalization of the weighted kernel. This difference is very explicit for indicator

weight functions since F♭
A = F, while F♯

A ̸= F, on A. Because of this, only the censored

scoring rule allows for identifying the original distributions on {w > 0} when comparing

two candidates F and G. Consequently, the assumed strict propriety of the original rule

localizes to {w > 0} for the censored scoring rule.

Leveraging this intuition, one might conjecture that more general transformations to the

distribution that suitably replace the Dirac measure in Definition 4 by an arbitrary nuisance

distribution may also be performed, as long as the transformation remains independent of

the original distribution and ‘identifiable’ when comparing two candidate distributions.

The latter requirement, formalized by Assumption 1 below, ensures that the generalized

censored scoring rule in Definition 5 is still strictly locally proper.

Definition 5 (Generalized censored scoring rule). Let S : P♭ × Y → R̄ denote a regular

scoring rule and H ⊆ P a class of nuisance distributions. The associated generalized

censored scoring rule is given by the map S♭
·,· : P × Y ×W ×H → R̄,

S♭
w,H(F, y) := w(y)S(F♭

w,H, y) +
(
1− w(y)

)
EHS(F

♭
w,H, Q), dF♭

w,H := dFw + F̄wdH,

where F♭
w,H is referred to as the generalized censored distribution of F and H ∈ H denotes

the distribution of the random variable Q.

Assumption 1. The weight function w ∈ W and nuisance distribution H ∈ H ⊆ P are

such that ∃E ∈ G : Fw(E) = 0 and H(E) > 0, ∀F ∈ P ,H ∈ H.

The following theorem, the proof of which is contained in Appendix A.1, establishes

the strict local propriety of the generalized scoring rule.
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Theorem 2. Suppose that: (i) the regular scoring rule S in Definition 5 is strictly proper

relative to P♭, and (ii) W and H are such that Assumption 1 is satisfied. Then, the

generalized censored scoring rule S♭ in Definition 5 is strictly locally proper relative to

(P ,W ,H).

We refer to H as a nuisance distribution since its sole role is to suitably allocate the

probability mass F̄w. Correspondingly, the rationale behind the choice of H is to add

as little information to the censored distribution as the regular scoring rule permits. For

example, the choice dH = dδ∗ provides no information about the location of F̄w, particularly

appropriate for semi-local scoring rules. Yet, when dealing with scoring rules based on

distribution functions, which are restricted to real numbers, the scoring rule demands

information about the location of F̄w, e.g., incorporated by replacing δ∗ by δr, where r ∈

Rd; see Section 3.3. Selecting δr as nuisance distribution in such cases easily upholds

Assumption 1 as a regularity condition, as it suffices to restrict to distributions without a

point mass at r and/or weight functions satisfying w(r) = 0. Additionally, with F(∗) = 0

by definition, Assumption 1 is trivially met for dH = dδ∗, the choice of H in Theorem 1.

Finally, a corollary of Lemma A2 in the proof of Theorem 2 is that

DS♭
w,H

(F∥G) = DS(F
♭
w,H∥G♭

w,H), (5)

i.e., the censored score divergence from F to G is the score divergence of the corresponding

censored distributions. In particular, this means that we have identified a family of so-

called localized divergence measures, satisfying the properties of a divergence measure (see

Section 2.1) on {w > 0}. Indeed, if S is strictly proper, such that DS is a divergence

measure, it follows that DS♭
w,H

(F∥G) ≥ 0, with strict equality if and only if F(E ∩ {w >

0}) = G(E ∩ {w > 0}), ∀E ∈ G.
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3.2 Z,Q-Randomization

The (generalized) censored scoring rule in Definition 4 (5) can alternatively be formulated

in terms of a randomization procedure. This is particularly appealing for general weight

functions for which it yields an identity similar to Equation (4) for indicator weight func-

tions. This procedure relies on an auxiliary random variable Zw, indicating, conditional on

the realization y, whether the observation is censored or not. More specifically, we let

Y ♭
Zw

:= φ(Y, Zw), φ(Y, Zw) :=


Y, Zw = 1,

∗, Zw = 0,

where Zw|(Y = y) ∼ BIN
(
1, w(y)

)
. By working out the conditional expectation, it is

obvious that Y ♭
w = EZw|Y φ(Y, Zw) coincides with the specification of the censored random

variable in Equation (2). For w(y) = 1A(y), the random variable ZA degenerates to being

one if y ∈ A and zero otherwise, so that Y ♭
ZA

= Y ♭
A with probability one. Correspondingly,

the Z-randomization definition of the censored scoring rule reads

S♭
w(F, y) = EZw|(Y=y)S(F

♭
w, y

♭
Zw

), (6)

which is equivalent to the censored scoring rule defined by Definition 4.

A similar line of reasoning holds for the generalized censored scoring rule. In addition

to the auxiliary random variable Zw, we introduce an independent random variable Q with

distribution H. Rather than labeling the observation as censored, we now take a random

draw from Q if Zw = 0, i.e., we define

y♭w,H := φw,H(y, Zw, Q), φw,H(y, Zw, Q) :=


Y, if Zw = 1,

Q, if Zw = 0.

As anticipated, the distribution of Y ♭
w,H = EZw|Y,Hφw,H(y, Zw, Q) coincides with the spec-

ification of F♭
w,H in Definition 5. Additionally, the generalized censored scoring rule of
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Definition 5 admits the Z,Q-randomization representation

S♭
w,H(F, y) = EZw|(Y=y),HS

(
F♭
w,H, y

♭
w,H

)
,

which reduces to Equation (6) for H = δ∗.

3.3 Examples

We now apply our censoring procedure to the regular scoring rules defined in Subsection 2.1.

Following the classification into semi-local and distance-sensitive scoring rules, we start by

localizing the former class.

Semi-local scoring rules. Together with the main characteristics of the LogS, PowSα

and PsSphSα families, Table 1 presents the localized versions of these families based on

conditioning, censoring and generalized censoring. As displayed in Table 1, each of the

regular families is strictly proper relative to Pα, the class of µ-densities with a finite Lα-

norm, where α = 1 for LogS. Hence, one can easily verify their strict propriety with respect

to P♭
α as required for Theorems 1 and 2, since ∥f ♭

w∥αα ≤ 1 + ∥f∥αα < ∞, ∀f ∈ Pα, ∀w ∈ W .

Upon comparing the censored and conditioned versions of the rules in Table 1, we notice

that the censored variants bear an isolated F̄w-dependent term, preserving the coverage

probability of {w = 0}. While preserving the likelihood F̄w of being censored, Table 1

demonstrates that the semi-local censored scoring rules are independent of ∗, the label of

a censored observation. The generalized censored scoring rules in Table 1 extend these

findings. Specifically, these rules maintain invariance to the choice of the nuisance density

on {w = 0} upon normalization by the α-norm of h, i.e., to the class of densities h̃ =

h/∥h∥α , where α = 1 for LogS. Since ∥h∥1 = 1, this means that LogS is invariant to

the unnormalized choice of h, as can be seen from Table 1. Lastly, Table 1 includes the

localized divergence measures DS♭
w
, which are all localized Bregman divergences since all
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Ḡ

α
−
1

w
( ∥f

w
∥α α

+
F̄

α w

)1 α
−

∫ f
w
g
α
−

1
w

d
µ
+
F̄
w
Ḡ
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regular divergences DS in this table are necessarily of the Bregman type.

Distance-sensitive scoring rules. A rich class of distance-sensitive scoring rules is the

Energy Score family given by

ESβ(F, y) :=
1

2
EF∥Y − Ỹ∥β2 − EF∥Y − y∥β2 , β ∈ (0, 2),

where Ỹ and Ỹ denote independent copies of a d-dimensional random vector with distribu-

tion F ∈ Pβ and ∥ ·∥2 denotes the Euclidean norm. Moreover, Pβ denotes the class of Borel

probability measures on Rd such that EF∥Y∥β2 < ∞, the class relative to which the ESβ

family is known to be strictly proper Pβ (Gneiting and Raftery 2007). In contrast to the

semi-local scoring rules, the corresponding censored ES family is sensitive to ∗, particularly

to the (yet undefined) distance d(y) = ∥y − ∗∥2. Specifically,

S♭
w,H(F,y) =

1

2
EF♭

w,H
∥Y − Ỹ∥β2 − EF♭

w,H

(
w(y)∥Y − y∥β2 +

(
1− w(y)

)
d(Y)β

)
.

To define d(y), one straightforward approach is to set ∗ ∈ Rd, thereby indicating the

location of F̄w. It is important to recognize that the censored scoring rule’s outcome

is influenced by this choice, as ∗ now represents both the censored event and the value

assigned post-censoring. Motivated by the empirical observation that weight functions

often possess ‘pivotal points’, such as the edges of an indicator function or the center of

a kernel (Gneiting and Ranjan 2011), we refrain from introducing some general concept

for censored distances d. Instead, we allocate the residual mass F̄w across a set of pivotal

points r1, . . . , rk ∈ Rd, i.e.,

dF♭
w,γ := dFw + F̄w

k∑
i=1

γidδri , γ := (γ1, . . . , γk)
′ ∈ ∆(k), (7)

where ∆(k) denotes the unit simplex. Adding information about the location of F̄w when

demanded by the scoring rule reflects the discussion of the selection of the nuisance distribu-

tion in Section 3.1. Furthermore, similar to the semi-local scoring rules, it is straightforward
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to verify the strict propriety of the ESβ family relative to P♭
β. Indeed, ∀F ∈ Pβ, w ∈ W , it

follows that EF♭
w,γ

∥Y∥β2 =
∫
Rd ∥y∥β2Fw(dy)+F̄w

∑k
i=1 γi∥ri∥

β
2 < EF∥Y∥β2+

∑k
i=1 ∥ri∥

β
2 < ∞.

This approach being the conventional one for scoring rules sensitive to distance, we hence-

forth omit the dependence on γ in our notation.

Our approach to distance-sensitive scoring rules has some direct implications for the

CRPS. First of all, for all left- and right-tail indicator functions, with pivotal point r,

one can easily show that the CRPS♭
w coincides with twCRPS. In other words, CRPS♭

w =

twCRPS, for all weight functions for which Holzmann and Klar (2017a, Theorem 5) proved

that the twCRPS is strictly locally proper. Second, for other weight functions such as

the center indicator functions for which the twCRPS loses its strict local propriety due

to its non-localizing nature (see Example 2), CRPS♭ serves as a strictly locally proper

alternative. This alternative bears an additional parameter γ, the selection of which is

contingent on the specific application. For the indicator function w(y) = 1[r1,r2] it is natural

to choose γ = 1
2
if r1 = −r and r2 = r and one aims to compare the predictive ability

of two candidates that are both symmetric around zero. Moreover, in applications where

empirical data are available, one can alternatively distribute F̄w according to the empirical

proportion of data falling into the left- and right tail. By using the same estimate γ̂ for

all considered candidate distributions, the censored scoring rule remains strictly locally

proper. This would be different if one would use a candidate-derived probability for falling

into either tail, e.g., by setting γF = F (r1)/F̄w. Such a method results in a non-localizing

scoring rule, as only the sum F (r1)+
(
1−F (r2)

)
= F̄w is implied by F on [r1, r2]. This non-

localizing characteristic is evident in the twCRPS, which can be regarded as a semi-censored

scoring rule S†
w(F, y) = S(F†

w, y), where dF†
w = dFw + F (r1)dδr1 +

(
1 − F (r2)

)
dδr2 , for

w(y) = 1[r1,r2](y). Another example of a semi-censored scoring rule is the centre ‘censored’
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log-likelihood introduced by Mitchell and Weale (2023) and Harvey and Liao (2023), which

hence also fails to be strictly locally proper.

3.4 Localized Neyman Pearson

In anticipation of the applications contained in the next section, we now consider an explicit

time-series context. Specifically, we consider a stochastic process {Yt : Ω → Y}Tt=1 from

a complete probability space (Ω,F ,P) to a measurable space (YT ,GT ), where YT and GT

denote the product outcome space and σ-algebra of the individual outcome spaces Y and

σ-algebras G, respectively. The process generates the filtration {Ft}Tt=1, in which Ft =

σ(Y1, . . . , Yt) is the information set at time t, satisfying Ft ⊆ Ft+1 ⊆ F , ∀t. The random

variable of interest becomes Yt+1 conditional on Ft, indicated by adding a subscript t to

the notation of (predictive) distributions, distribution functions and µ-densities, assuming

the existence of a dominating measure µ, ∀t. We adopt the same notation for objects

related to Qt+1. If desired, a generalization to a sequence of µt-densities is straightforward.

Furthermore, the regions of interest At ⊆ Y are assumed to be Ft-measurable.

The aim of this subsection is to derive a uniformly most powerful (UMP) test for the

following null and alternative hypotheses:

H0 : pt1At = f0t1At , ∀t vs. H1 : pt1At = f1t1At , ∀t. (8)

Although the predictive densities under the null and alternative hypotheses are assumed

to be known, i.e., fixing fjt, j ∈ {0, 1}, the testing problem remains a multiple versus

multiple hypothesis test due to the lacking specification of the density outside the regions

of interest At. In other words, the densities
[
f0t1At +

(
F0t(A

c
t)/Ht(A

c
t)
)
ht1Ac

t

]♭
At

and [f0t]
♭
At

coincide, assuming Ht(A
c
t) > 0. Here, [·]♭w refers to censoring a distribution (function)

and density according to Equations (2) and (3), respectively. Similarly, we use [·]♯w for
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conditioning. This notation is particularly helpful in this subsection due to the additional

subscripts related to time and hypotheses. Theorem 3 reveals that this setting admits

a UMP test, reducing to the Neyman and Pearson (1933) lemma when At = Y , ∀t. A

detailed proof of this result is deferred to Appendix A.2.

Theorem 3 (Localized Neyman Pearson). For any given α ∈ (0, 1), the UMP test of size

α for testing problem (8) reads

ϕ♭
A(y) =



1, if λ(y) > c

γ, if λ(y) = c

0, if λ(y) < c,

λ(y) :=
[f1]

♭
A(y)

[f0]♭A(y)
, [fj]

♭
A(y) :=

T−1∏
t=0

[fjt]
♭
At
(yt+1), j ∈ {0, 1},

where ϕ♭
A : YT → [0, 1] denotes a test function specifying the rejection probability, c is the

largest constant such that [F0]
♭
A

(
λ(y) ≥ c

)
≥ α and [F0]

♭
A

(
λ(y) ≤ c

)
≥ 1−α, and γ ∈ [0, 1]

is such that α = [F0]
♭
A

(
λ(y) > c

)
+ γ[F0]

♭
A

(
λ(y) = c

)
.

For T ≡ 1, the test in Theorem 3 reduces to the UMP test for a single observation

proposed by Holzmann and Klar (2017b). Moreover, Corollary 1 reveals that the test in

Theorem 3 can alternatively be formulated in terms of the CSL introduced by Diks et al.

(2011). Corollary 2 endorses that the conditional operator does not bear a UMP test too,

making the censored operator preferable to its conditional counterpart in the setting of this

subsection. The proofs of Corollaries 1 and 2 are deferred to Appendices B.2 and B.3.

Corollary 1. An alternative formulation of the UMP test for testing problem (8) is given

by the test defined in Theorem 3 with λ(y) replaced by λ̃(y) :=
∑T−1

t=0

(
LogS♭

At
(f1t, yt+1) −

LogS♭
At
(f0t, yt+1)

)
, i.e., in terms of the CSL.

Corollary 2. For testing problem (8), the test ϕ♯
A, which is defined as ϕ♭

A upon replacing

♭ by ♯, is not UMP.
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3.5 Monte Carlo study

Employing a simulation design similar to Diks et al. (2011), Holzmann and Klar (2017b)

and Lerch et al. (2017), we analyze in Monte Carlo simulations the size and power properties

of the Giacomini and White (2006) test based on conditional and censored scoring rules.

In this subsection, we summarize the main findings; the simulation results are described

in full detail in Appendix D. The test we employ relies on the score difference series of

two candidates f̂t and ĝt, that is, realizations of D
x
t+1 := Sx

w(f̂t, Yt+1)− Sx
w(ĝt, Yt+1), where

x ∈ {♯, ♭}, in testing the null hypothesis H0 : EptS
x
w(f̂t, Yt+1) = EptS

x
w(ĝt, Yt+1), by means of

tTest,n :=
1

n

T−1∑
t=Test

dxt+1√
σ̂2
Test,n

/n
, n := T − Test,

where Test denotes the length of the estimation window, and σ̂2
Test,n

is a heteroskedastic-

ity and autocorrelation-consistent (HAC) variance estimator in non-i.i.d. settings. This

null hypothesis, which is equivalent to H0 : DSx
w
(pt∥f̂t) = DSx

w
(pt∥ĝt), is rejected if it is

sufficiently unlikely that the localized score divergence from pt to f̂t and pt to ĝt coincide.

Appendix D.1 first confirms the good size properties of both conditional and censored

scoring rules. A natural conjecture is that strictly locally proper scoring rules generally

lead to higher power since they are sensitive with respect to all measurable aspects of the

distribution. Yet, the dependence of the null hypothesis on the scoring rule makes the null

and rejection sets dependent on the scoring rule too, obstructing theoretical results such

as Theorem 3. Nevertheless, the power results displayed in Appendix D.2, are clearly in

favor of censoring as localization mechanism: censoring yields both higher power and lower

spurious power compared to conditioning in all three Monte Carlo experiments that we

have conducted. In the left-tail application for standard Normal and Student-t candidates,

the differences are less monotonic than in the two other experiments, due to the fact that

the scores intersect by construction for the selection of candidates.
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4 EMPIRICAL PERFORMANCE

In this section, we assess the empirical performance of censoring versus conditioning by

comparing the MCS implied by conditional and censored scoring rules. As delineated

by Hansen et al. (2011), the MCS procedure expands the Giacomini and White (2006)

hypothesis to larger sets of H0-equivalent methods, employing an iterative elimination

procedure to test the null of equal predictive performance of all methods in an initial set

M0. This can be achieved by combining the relative scores into either TR:= maxi,j∈Mk
|ti,j|

or Tmax:= maxi∈Mk
ti, where ti,j refers to the t-statistic of the relative scores between

methods i and j and ti to the tT,Test-statistic of the relative scores between method i and

the average score over all methods inMk, the set of methods that have survived until the k-

th elimination round. Favorable power properties of censoring in the Giacomini and White

(2006) environment intuitively accelerate elimination in the MCS procedure, resulting in

smaller MCS p-values and, consequently, reduced cardinality. We present results at the 0.90

and 0.75 confidence levels, utilizing the TR statistic as benchmark with a block bootstrap

with B = 10, 000 replications and block length k = 5, unless stated otherwise. Our results

are robust to variations in these parameters. When CRPS♭ and twCRPS differ, we include

the twCRPS for reference. We quantify differences in cardinality in absolute terms, framed

as the proportion of cases wherein the number of methods in MCS♭ is (strictly) smaller than

MCS♯, the MCS under censoring and conditioning. Additionally, we provide the factor by

which the cardinality of the MCS expands when conditioning is adopted in lieu of censoring.

4.1 Risk management

Evaluating the downside risk of asset returns is a crucial task in risk management, par-

ticularly for compliance with regulatory requirements related to risk measures such as the
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Value-at-Risk (VaRq

f̂t
), which represents the q-th quantile of the model-based estimated

density forecast f̂t and the more recently mandated Expected Shortfall ESq

f̂t
, which quan-

tifies expected losses conditional on exceeding VaRq

f̂t
. To achieve this, we opt for a weight

function wt(yt) = 1(−∞,r̂qt )
(yt) and choose as the variable of interest yt the log-returns of

the S&P500, that is, yt = log(Pt/Pt−1), where Pt is the closing price on day t, adjusted for

stock splits and dividends. The data consists of 6,777 daily observations, spanning from

January 2, 1996, to December 30, 2022, sourced from Yahoo Finance.

All selected forecast methods conform to Yt|Ft−1 ∼ D(µ, σ2
t ,ϑ), denoting a parametric

family of distributions with mean µ, variance σ2
t and other parameters collected in ϑ.

While we evaluated AR(1) and AR(5) models for the conditional mean, they did not yield

significant improvements over a constant mean specification. We consider three conditional

variance models: the GARCH(1,1) model proposed by Bollerslev (1986), the more general

TGARCH(1,1) model introduced by Glosten et al. (1993):

σ2
t = ω + α(yt − µ)2 + βσ2

t−1 + γ(yt − µ)21yt−µ≤0, (9)

which reduces to GARCH(1,1) for γ = 0, and the RGARCH(1,1) model developed by

Hansen et al. (2012), given by

σ2
t = ω + αxt−1 + βσ2

t−1, xt = ξ + ϕσ2
t + τzt + κ(z2t − 1) + ut,

where xt represents the realized measure1, zt = (yt − µ)/σt, and ut denotes a white noise

process with variance σ2
u. We combine each of the volatility models with a standard normal

and Student-tν distribution, comprising six forecast methods in total. We estimate all

parameters via maximum likelihood on a rolling window of length Test = 1, 000.

Table 2 reveals stark differences in the cardinality of MCS♭ and MCS♯, particularly at

the shortest forecast horizon h = 1. At a 0.90 confidence level and h = 1, MCS♯ is smaller

1Downloaded from https://dachxiu.chicagobooth.edu/#risklab
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only in one case across the examined quantiles and scoring rules, namely for q = 0.25 and

S = QS, see Table E.1.a. Equality in MCS size occurs mainly for higher quantiles, where

information scarcity with respect to the distributions on (−∞, r̂qt ) is less critical. For h = 1,

MCS♯ contains more than twice the number of methods compared to MCS♭ on average.

For h = 5, the differential reduces but remains substantial, averaging around a factor 1.7.

Examining the composition of the MCSs reveals that the censored MCSs are often a

subset of the conditional MCSs, when |MCS♭| ≤ |MCS♯|. The significance of reductions

due to censoring is further emphasized by the fact that the resulting MCSs encompass

more complex model specifications, which would be the optimal choices in the absence of

parameter and forecasting uncertainty. Robustness checks, pertaining to k and Test, confirm

the stability with respect to these parameters (see Table E.1.b). Additionally, the use of the

TR statistic tends to expedite model elimination, yielding smaller MCS p-values compared

to Tmax; this acceleration, however, is consistent across both censoring and conditioning.

Beyond the statistical assessment of forecast methods, we compute their 1- and 5-step

ahead Value at Risk (VaRq

f̂t
) and Expected Shortfall (ESq

f̂t
). These measures provide only

partial insight into the forecasts, since the tail component of the density forecast carries

more comprehensive information than a single quantile (VaRq

f̂t
) or conditional moment

ESq

f̂t
= Ef̂t

(
Yt+h|Yt+h ≤ VaRq

f̂t

)
. Notably, the conditioning in ESq

f̂t
is a quantile of the

density forecast itself rather than r̂qt , a.s. implying a discrepancy between the operational

region of ESq

f̂t
and the focused scoring rules introduced above.

We highlight a corollary before discussing results. Given a fixed level q, let rt be such

that VaRq

f̂t
∨ VaRq

pt ≤ rt. A property of the censored scoring rule is its ability to render

the true (VaRq
pt ,ES

q
pt) pair, since

DS♭
w
(pt∥f̂t) = 0 =⇒ (VaRq

pt ,ES
q
pt) = (VaRq

f̂t
,ESq

f̂t
), (10)
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Table 2: Changes in MCS cardinality between censored and conditional scoring rules.

Tail(s) Interval

|MCS0.90| |MCS0.75| |MCS0.90| |MCS0.75|

h ≤ < ♯/♭ ≤ < ♯/♭ ≤ < ♯/♭ ≤ < ♯/♭

Risk Management

1 96% 71% 2.28 92% 63% 2.04

5 75% 38% 1.69 58% 50% 1.72

Inflation

6 100% 92% 2.00 92% 83% 2.93 100% 83% 2.91 100% 100% 3.72

12 75% 50% 1.86 67% 58% 2.38 100% 67% 2.35 83% 75% 2.72

24 92% 75% 2.86 92% 58% 3.31 100% 67% 2.33 100% 92% 3.23

Climate

1 87% 58% 2.01 75% 50% 1.74 92% 42% 1.54 83% 42% 1.46

2 87% 50% 1.63 87% 38% 1.40 100% 67% 1.67 100% 58% 1.58

3 83% 50% 1.80 83% 42% 1.35 100% 58% 1.58 100% 25% 1.25

NOTE: This table presents changes in cardinality of the MCS in absolute and relative terms, at confidence
levels 0.75 and 0.90, across different forecast horizons h. Columns labeled ≤ (<) display the percentage
of cases where MCS♭ contains (strictly) fewer forecast methods than MCS♯ and the column labeled ♯/♭

reports the factor |MCS♯|/|MCS♭|. Each of the results represents an average over a set of levels or quantiles
q and scoring rules S ∈ {LogS,QS,SphS,CRPS}. The regions of interest for inflation are defined as
Aq = [2 − q, 2 + q] and its complement, where q ∈ {1, 1.5, 2}. For the climate data, Aq = (rq,∞), where
rq is the empirical q-th quantile of the estimation window, with q ∈ {0.75, 0.80, 0.85, 0.90, 0.95, 0.99} or
Aq = [18 − q, 18 + q] for q ∈ {1, 2, 4}. Complete MCS details and associated p-values are provided in
Appendix E. The p-values are obtained via a block bootstrap of B = 10, 000 replications, with block length
k = 5, or k = 200 for the climate data.

where wt(yt) = 1(−∞,rt)(yt). This is a direct consequence of (5), i.e., another corollary of

Lemma A1, and holds also more generally for any functional of distributions on {w > 0}. In

(sharp) contrast, DS♯
w
(pt∥f̂t) = 0 implies that pt ∝ f̂t on (−∞, rt) and hence (VaRq

pt ,ES
q
pt) ̸=

(VaRq

f̂t
,ESq

f̂t
), unless F̄w = P̄w. Therefore, model selection based on censored scoring rules

aligns more effectively with backtesting of functionals of the distribution compared to model

selection based on conditional scoring rules.

Thus, censoring is designed to generate MCSs containing forecast models that produce

(VaRq

f̂t
,ESq

f̂t
) pairs closer to the true pair. Support for this conjecture is found in Ta-
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ble E.1.b. While often being smaller, the censored MCS contains well-fitted (VaRq

f̂t
,ESq

f̂t
)

pairs, defined as 0% mismatches for both VaR and ES, more than twice as often (9 versus

4). If we accept up to 4% mismatches, the comparison remains favorable: 14 versus 7,

endorsing censored MCS as a superior selection mechanism for VaR and ES calculations.

4.2 Inflation

We next focus on forecasting inflation, a subject recently gaining prominence. Guided by

the inflation target of 2% set by the Federal Reserve System (FED)2 and European Central

Bank (ECB)3, we center our study on the range Aq = [2− q, 2+ q], where q > 0, employing

the weight function w(yt) = 1Aq(yt). Simultaneously, we consider policymakers’ concerns

for deviations beyond Aq, termed ‘Inflation at Risk’ (Lopez-Salido and Loria 2020), utilizing

the complement weight function w(yt) = 1Ac
q
(yt).

While the evaluation ingredients remain almost exactly the same, the unique charac-

teristics of the inflation time series necessitate an adapted set of forecast methods. We

closely align with the methodology presented by Medeiros et al. (2021), using the same 122

variables from the FRED-MD database (xt), spanning January 1960 to December 2015.

This timeframe encompasses a total of 672 monthly observations, with the final 180 being

out-of-sample relative to the initial estimation window. While using the same baseline

U.S. consumer price index CPIt =: Pt inflation as Medeiros et al. (2021), we follow Stock

and Watson (2002) and Borup et al. (2022) by analyzing the h-step ahead forecasts of

the accumulated series yht+h = (1200/h) log
(
Pt+h/Pt

)
, instead of the accumulation of the

individual h-step ahead forecasts of the monthly rate. This direct approach is standard in

the literature and especially advantageous for density forecasts, as accumulating densities

2Source: https://federalreserve.gov/monetarypolicy/files/fomc longerrungoals.pdf
3Source: https://ecb.europa.eu/mopo/implement/app/html/index.en.html
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is more complex than aggregating point forecasts.

Each of the forecast methods under consideration can be represented as

yht+h = µh
j,t+h(xt) + uh

t+h, uh
t+h|Ft ∼ NTP(0, σ1, σ2), σ1, σ2 > 0,

where NTP(0, σ1, σ2) denotes the two-piece normal distribution. For the conditional mean

µh
j,t+h, we take the following subset of models listed by Medeiros et al. (2021): Random

Walk, Auto-Regressive model (AR), Bagging, Complete Subset Regression (CSR), Least

Absolute Shrinkage and Selection Operator (LASSO), and Random Forest models. The

implementation specifics of these models are elaborated upon in Section 4 of Medeiros et al.

(2021). The density of the two-piece normal distribution reads

f(y;µ, σ1, σ2) =
2

σ1 + σ2

(
ϕ

(
y − µ

σ1

)
1y<µ + ϕ

(
y − µ

σ2

)
1y≥µ

)
, σ1, σ2 > 0,

where ϕ(z) denotes the density of the standard normal distribution. This distributional

choice is congruent with the underlying statistical model employed in the fan charts pub-

lished by the Monetary Policy Committee of the Bank of England (Clements 2004; Mitchell

and Hall 2005; Gneiting and Ranjan 2011).

The summary results presented in Table 2 show the difference between the cardinality

of the MCS♭ and MCS♯, averaged over q ∈ {1, 1.5, 2}. Table 2 reveals a distinct and

pronounced preference for censoring. Notably, the cardinalities of MCS♭ are generally —

with ‘generally’ here not seldom verging on unanimity — smaller than those of MCS♯. This

is especially salient in the Center case, where the MCS♭ are almost always weakly smaller

than the corresponding MCS♯. While it is unsurprising, given these results, that the relative

increase in set cardinality when opting for conditioning over censoring is positive, the

specific magnitudes of these increases even (substantially) exceed 100%. This is a striking

finding; it effectively indicates that MCS♯ consistently encompasses more than twice the

number of methods compared to MCS♭, thereby making the use of MCS♯ hard to defend.
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The differences between the MCS variants are clearly highlighted by the p-values pre-

sented in Table E.2.b, which also offers more detailed insights. For q = 1 the cardinality of

MCS♯
0.90 consistently exceeds or equals that of MCS♭

0.90 with the sole exceptions occurring

in tail cases predicated on the CRPS for h = 12 and h = 24, and QS for h = 12. These

exceptions feature a marginal difference of one. At a confidence level of 0.75, a similar

trend is observed, albeit without the QS exception for the tail case but with two additional

exceptions for the center case at h = 12 in both the QS and CRPS rules.

Finally, a closer look at the differences between the twCRPS and CRPS♭ is in place.

In the Center panel, we observe that the CRPS♭ is preferred to the twCRPS for h = 6

and h = 24, for both q = 1 and q = 1.5. For h = 12, the differences are less pronounced,

slightly favoring the twCRPS for q = 1 and q = 1.5, but not for q = 2.

4.3 Climate

In a third application, we generate density forecasts for Dutch daily average temperature

data, extending the data and methodology of Franses et al. (2001) and Tol (1996). We

maintain focus on volatility clustering and changing asymmetries in past temperature to

volatility relations, along with accounting for seasonal variations in the mean and variance.

Contrary to Franses et al. (2001), we use daily observations instead of the implied weekly

averages. The dataset spans from February 1, 2003, to January 31, 2023, with the first

Test = 2922 days serving as the initial estimation window. Our models closely follow the

GARCH, QGARCH-I, and QGARCH-II specifications as in Franses et al. (2001), but with

alterations in seasonal trend estimation. Specifically, we use local day averages for the

mean and a sine function for volatility, as opposed to a quadratic function. The models
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can be formalized as: Yt|Ft−1 ∼ D(µt, σ
2
t ,ϑ), where µt = mt|t−1 + ϕyt−1 and

σ2
t = φ(t;ω0, ω1) + α

(
yt−1 − µt−1 − φ(t; γ0, γ1)

)2
+ βσ2

t−1.

Here, mt|t−1 is the average temperature of days with the same day number in the estimation

window, that is, all s ∈ [t−Test, t− 1] such that T̃s = T̃t, where T̃t = min(Tt, 365), in which

Tt is the day number, with Tt = 1 on the first of February. The latter choice exploits

the periodic pattern revealed by Figure 1 in Franses et al. (2001), which we model by

φ(t; θ0, θ1) = θ0 + θ1| sin(π/365 · T̃t)|. These models are combined with both Normal and

Student-tν distributions to produce six forecast methods.

The summary findings are presented in the Climate panel of Table 2, focussing on the

right tail (r̂qt ,∞) and the interval [18 − q, 18 + q]. The latter interval has its roots in the

agricultural literature, corresponding to the optimal temperature for tuber growth, agreed

to be approximately 18 degrees Celsius (Struik 2007, Section 18.5.5). Analyzing the results

of this interval case, it is observed that there are no instances where conditioning leads to a

smaller MCS for h = 2 and h = 3 and almost no such cases for h = 1, similar to the inflation

interval case. Relative to inflation, there is a notable increase in cases in which the MCSs

possess identical cardinality, which is also reflected by the smaller factors |MCS♯|/|MCS♭|.

The MCS p-values reported in Table E.3.b reveal that the MCSs are consistently small

in the interval case, frequently including one or both of the QGARCH-II methods. This

observation suggests that the preference for censoring, as depicted in Table 2, translates

into the censored scoring rule’s more effective recognition of the QGARCH-II methods’

pronounced superiority. Table E.3.b further demonstrates that the performance of the

CRPS♭ and twCRPS is closely matched.

The results for the right tail example, corresponding to (exceedingly) high daily temper-

atures, exhibit parallels with the left-tail risk management application. In particular, the
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cardinalities of the censored MCSs are typically smaller than their conditional counterparts;

these disparities diminish as forecasting horizons extend. The tails panel of Table E.3.b re-

veals that, although to a lesser degree and particularly at elevated levels of q, the MCS often

comprise relatively compact sets, encompassing one or both of the QGARCH-II methods.

5 CONCLUSION

In many applications, forecasters are particularly interested in specific areas of the outcome

space. Addressing this, we champion censoring as focusing device, demonstrating that

applying scoring rules to censored distributions results in strictly locally proper scoring

rules. To the best of our knowledge, we are the first to derive a transformation of the

original scoring rule that preserves strict propriety. Our approach features high flexibility,

applicable across varied scoring rules, weight functions, and outcome spaces. For specific

choices, the censored scoring rule yields intuitively appealing rules apt for practical use.

For instance, we recover the twCRPS for tail indicators, while solving its localization bias

for other weight functions.

Our second theoretical contribution, a generalization of the Neyman Pearson lemma,

revolves around the censored likelihood score. We have shown that the UMP test of the

localized Neyman Pearson hypothesis is a censored likelihood ratio test, reducing to the

original lemma if the weight function is one for all outcomes. By contrast, the conditional

likelihood ratio test is not UMP. Monte Carlo simulations incorporate the Giacomini and

White test to assess the power properties of conditional versus censored scoring rules based

on the score differences between two candidates. The findings endorse the superior power

properties of censoring, extending beyond the stylized scenario in which the candidates’

tails are close to proportional.
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To analyze real performance, we use the size of the Model Confidence Set (MCS) as an

indicator of power. Notably, in our inflation example — where the number of observations

is characteristically low, akin to many macro-applications — the frequency with which the

censored MCS is strictly smaller than the conditional MCS strikes, as does the difference

in cardinality. These observations hold across different horizons, whether centered on the

2% target or its complement. In focused forecast assessments of S&P500 and temperature

data, a comparable pattern emerges, corroborating the enhanced power of censoring.

SUPPLEMENTARY MATERIAL

All proofs and additional theoretical results, the Monte Carlo analysis, and full tables

on the empirical performance are provided in an online supplementary document. (.pdf)
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