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Abstract

A novel method for noise reduction in the setting of curve time series with error
contamination is proposed, based on extending the framework of functional principal
component analysis (FPCA). We employ the underlying, finite-dimensional dynamics
of the functional time series to separate the serially dependent dynamical part of the
observed curves from the noise. Upon identifying the subspaces of the signal and
idiosyncratic components, we construct a projection of the observed curve time series
along the noise subspace, resulting in an estimate of the underlying denoised curves.
This projection is optimal in the sense that it minimizes the mean integrated squared
error. By applying our method to similated and real data, we show the denoising
estimator is consistent and outperforms existing denoising techniques. Furthermore,
we show it can be used as a pre-processing step to improve forecasting.
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1 Introduction

Due to an abundance of data in our modern day and age, curve time series, also known
as functional time series, are increasingly encountered across various disciplines of soci-
ety (Bosq, 2000; Hörmann and Kokoszka, 2010; Hörmann and Kokoszka, 2012; Panaretos
and Tavakoli, 2013; Aue et al., 2015). Curve time series can either arise as functions ob-
served at consecutive discrete moments in time, such as curves describing the term struc-
ture of interest rates (Hays et al., 2012; Caldeira and Torrent, 2017; Andreasen et al., 2019;
Sen and Klüppelberg, 2019), return density curves (Bathia et al., 2010) and near-infrared
spectroscopy data (Yang et al., 2022), or by splitting an underlying continuous-time process
into consecutive equal-length time segments, such as periodic weather record charts (Shang
and Hyndman, 2011), intraday energy consumption curves (Cho et al., 2013) and hourly
concentration patterns of pollutants (Hörmann et al., 2015). The observed curve time series
generally consist of a dynamical part, which is characterised by serial dependence across
different curves in the time series, and a white noise part. These parts are latent, i.e. not
separately observable, challenging the identification and modelling of the dynamical part of
curve (or more generally, high-dimensional) time series, which currently is an active area of
research (Qin et al., 2020; Gao and Tsay, 2021; Chen et al., 2022; Cubadda and Hecq, 2022;
Dong et al., 2022; Yang et al., 2022; Qin, 2022; Chang et al., 2023).

In this paper we propose a novel pre-processing methodology that filters out the noise
from a functional times series, thereby giving access to the dynamics. Following Bathia et
al. (2010) we consider a univariate curve time series

Yt(u) = Xt(u) + εt(u), (1.1)

where t = 1, . . . , n labels the time steps and u ∈ I, with I being a bounded interval on
which the curves are defined. The nature of this interval (e.g., temporal, spatial) depends
on the context in which the time series arises. Only the curves Yt(·) ∈ L2(I) can be
observed and are thought of as consisting of a sum of an unobservable signal curve Xt(·)
and an unobservable noise curve εt(·) according to (1.1). By definition, the signal curve
consists of the part of Yt(·) that exhibits serial correlation and is in that sense dynamical.
The remaining part of Yt(·), which by assumption has zero autocorrelation, is associated
with the noise curve. This so-called error contamination accounts for several potential
sources of noise. For processes containing a component without serial dependence, this non-
dynamical part will be attributed to the noise curves. If the signal is observed imperfectly,
idiosyncratic measurement errors are also part of the noise curves. One can think of, for
instance, experimental errors or the use of discrete grids giving rise to numerical round-
off errors (Bathia et al., 2010). Another example is when an observed signal requires
estimation, thereby introducing estimation error.

A common approach to the analysis of curve time series is by functional principal
component analysis (FPCA) (Dauxois et al., 1982; Jones and Rice, 1992), where the signal
curves are decomposed in terms of M = span{ϕ1(u), . . . , ϕd(u)}, a low-dimensional space
of curves which we will call the dynamical space or signal space. This decomposition is
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Figure 1: A sketch of the main idea of MISE-optimal denoising, with a 1-
dimensional dynamical space M and a 2-dimensional noise space Mε. In the
expression for the reconstructed noise X̂opt

t , not only the perpendicular noise is
subtracted from the observed time series, but also the conditional expectation
of the parallel noise component.

given by

Xt(u) − µ(u) =
d∑

i=1

ξtiϕi(u), (1.2)

where µ(u) := E[Xt(u)] and the random variables ξti constitute a (by assumption) station-
ary vector-valued time series. From the perspective of FPCA they can be called “principal
components”. An alternative perspective is provided by high-dimensional factor models
(see e.g. Hallin et al., 2023 and Tavakoli et al., 2023), in the context of which ξti would be
called “(factor) loadings”.

Bathia et al. (2010) used the dynamical properties (i.e. serial dependence) of the signal
curves to estimate d as well as to find an orthonormal basis of M. This is a non-trivial task,
as a naive implementation of FPCA would lead to an asymptotically biased estimate due to
a non-neglible contribution from the noise covariance Σε(u, v) := Cov [εt(u), εt(v)] . We will
refer to this method as “dynamical functional principal component analysis” (DFPCA).
Building on Bathia et al. (2010), our two main contributions are:

• under mild assumptions about the time series of the principal components ξti, we
are able to estimate the noise covariance Σε(u, v). We use this to identify a finite-
dimensional structure of the space of noise curve Mε, analogously to FPCA-based
estimation of the dynamical space M;

• using this structure, we decompose the noise curves εt(u) = ε
∥
t (u) + ε⊥t (u) in a com-

ponent parallel to the dynamical space M and a perpendicular component. Given
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an estimate of M, we can observe the perpendicular noise ε⊥t (·) component via or-
thogonal projection of the observed curves onto the dynamical space, and use the
knowledge of the noise covariance Σε(·, ·) to fit a linear regression model for the

conditional expectation E
[
ε
∥
t (·)

∣∣ε⊥t (·)
]
. This in turn is used to reconstruct the un-

observable signal curves Xt(·) in a way that minimizes the mean integrated squared
error (MISE) between the original signal curve and its reconstruction. We call this
method, which is graphically illustrated in Figure 1, MISE-optimal denoising.

In a simulation study we show that MISE-optimal denoising is consistent, in the sense that
the obtained MISE converges to its theoretical minimum as the time series length increases.
Furthermore, we show that using a MISE-optimal denoised signal for forecasting outper-
forms other forecasting approaches. We also succesfully apply MISE-optimal denoising to
an empirical dataset of intraday temperature curves.

We emphasize that the proposed noise reduction method should be viewed as a pre-
processing step, using only mild assumptions about the underlying dynamical model. After
removing (part of) the noise from the observed curve time series, the remaining denoised
signal curves can be used in, e.g., existing modelling and forecasting techniques. The idea
is that the noise reduction step helps improve the estimation of the dynamics and as a
result also improves forecasting performance.

This paper is organized as follows. After a discussion of the related literature, Section 2
builds on DFPCA Bathia et al. (2010) to identify the structure of the noise space Mε and to
derive an estimator for MISE-optimal denoising. Section 3 discusses a number of practical
issues related to estimation in the context of MISE-optimal denoising. In Section 4 MISE-
optimal denoising is applied to simulated data and its performance is scrutinized in a
variety of ways. An application to empirical data is given in Section 5.

1.1 Related literature

Dimension reduction in functional data analysis has a long history, documented in a vast
body of literature; see, e.g., Ramsay and Silverman (2005) and references therein. In the
presence of serial dependence we talk about curve or functional time series (Bosq, 2000;
Hörmann and Kokoszka, 2010; Hörmann and Kokoszka, 2012; Panaretos and Tavakoli,
2013; Li et al., 2020). For early literature about dimension reduction in this context,
see (Bosq, 2000; Ferraty and Vieu, 2006). A major advancement in this field came with
Bathia et al. (2010), which identifies the “dimensionality of a curve time series”, meaning
the dimension and basis vectors of (what we call) the signal space. This is also the main
inspiration of this paper. Ideas similar to Bathia et al. (2010) have also been applied to
(latent) factor models for high-dimensional time series (Lam et al., 2011; Lam and Yao,
2012), which are closely related to the curve time series setting we study. Cubadda and
Hecq (2022) studied conditions for the existence of such a signal-noise decomposition in the
context of high-dimensional time series. Other attempts at separating signal from noise
have as disadvantage that they make strong additional assumptions about the structure of
the noise (Yao et al., 2005; Hall and Vial, 2006; Descary and Panaretos, 2019).
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A related form of denoising was considered by Dong et al. (2022), who project a
finite-dimensional time series onto a lower-dimensional time series, where the projection
is determined by minimizing a forecast error. Chen et al. (2022) developed a method for
functional linear regression, rather than noise reduc in a time series setting, using similar
elements from Bathia et al. (2010) as we do. In order fit a (scalar) response Rt with
respect to a functional predictor Xt(·), corresponding to the signal curves in our setup, a
slope function β(·) must be estimated such that

Rt =

∫
I
Xt(u)β(u) du+ ε′t, (1.3)

where ε′t is some idiosyncrasy term. The main similarity lies in their usage of the fact that
the autocovariance with nonzero lag of the signal curves Xt(·) is equal to the autocovariance
of the observed curves Yt(·). They use this to define a generalized method-of-moments
estimator for the slope function of functional linear regression. Chang et al. (2023) put
this approach in a broader framework and generalised it to multivariate functional time
series.

2 Methodology

In this section we present our main theoretical results: a method to identify the structure
of the noise space and a MISE-optimal denoising algorithm. We start with a brief review
of DFPCA, as this is the starting point of our main contributions. To improve readability,
technical details are often deferred to appendices.

2.1 A review of DFPCA

A naive approach to finding estimates of the dimension d and a basis of the dynamical
space M would consist of performing an eigensystem analysis of

ΣX(u, v) := Cov [Xt(u), Xt(v)] =
d∑

i=1

λiϕi(u)ϕi(v), (2.1)

where (1.2) was used, as well as the following properties of the principal components ξti as
proven by the Karhunen-Loève theorem:

E[ξti] = 0, Var[ξti] = λi, and E[ξtiξtj] = 0 if i ̸= j, (2.2)

which hold for all t = 1, 2 . . . , n. Note that by Mercer’s theorem all eigenvalues in (2.1)
are non-negative and for convenience we assume λ1 ≥ λ2 ≥ . . . ≥ λd > 0. The problem
with this approach is that ΣX(·, ·) cannot be estimated without bias, since the curves Xt(·)
cannot be observed directly and ΣY (u, v) := Cov [Yt(u), Yt(v)] = ΣX(u, v)+Σε(u, v). Using
the observable curves Yt(·) to estimate ΣX(·, ·) leads to a bias, in particular for relatively
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large noise. Hall and Vial (2006) circumvented this problem by assuming independence
of the curves Y1(·), . . . , Yn(·), as well as vanishing noise curves εt(·) in the limit of infinite
sample size n. It should be noted that this method does not use the serial dependence of
the curve time series.

Bathia et al. (2010) proposed an innovative method for estimating d and a basis for M,
based on the fact that the noise curves (by definition) do not exhibit any serial dependence.
In other words, the autocovariance of the noise for nonzero lag is zero, Cov [εt(u), εt+k(v)] =
0 for any k ̸= 0. This implies that the lag-k autocovariance of the signal curves, Mk(u, v) :=
Cov [Xt(u), Xt+k(v)] , equals the lag-k autocovariance of the observed curves:

Mk(u, v) = Cov [Yt(u), Yt+k(v)] , (2.3)

for any k ̸= 0. This is crucial, as now the observed curves Yt(·) can be used to estimate the
autocovariance of the signal curves Xt(·) for nonzero lag. Bathia et al. (2010) then exploit
the fact that, under certain assumptions (see Appendix A for details), the d-dimensional
eigenspace of any operator

K(u, v) :=

q∑
ℓ=1

cℓNℓ(u, v), with Nk(u, v) :=

∫
I
Mk(u, z)Mk(v, z) dz, (2.4)

coincides with the dynamical space M. The coefficients cℓ can be chosen (almost) arbi-
trarily, provided at least one of them is nonzero. The various operators K(·, ·) that are
obtained by different choices of the coefficients cℓ, give different sets of eigenfunctions,
but each set of eigenfunctions spans the same dynamical space M. Bathia et al. (2010)
choose q = 5 and cℓ = 1 for ℓ = 1, . . . , 5. We refer to their approach to finding d and a
basis for M as DFPCA, as it is using the dynamical properties encoded in the nonzero-lag
autocovariances Mk ̸=0(·, ·). For more details about DFPCA, see Appendix A

2.2 The structure of the noise space

This section focuses primarily on the noise covariance Σε(·, ·).Knowledge of this can provide
insights in the structure of the noise via the FPCA framework. To be more concrete,
it might enable us to identify a relatively small number of functions that account for
most of the noise present in the curve time series. Because the noise curves εt(·) are
not observable, it is not possible to directly estimate Σε(·, ·). Since Σε(u, v) = ΣY (u, v) −
ΣX(u, v) and ΣY (·, ·) can be estimated directly, the question is whether we can get access
to the covariance of the signal curves ΣX(·, ·).

DFPCA provides an alternative basis ψ1(·), . . . , ψd(·) of the signal curve space M that,
unlike the basis of (1.2), can be estimated consistently. With respect to this alternative
basis the demeaned signal curves can be expressed as,

Xt(u) − µ(u) =
d∑

i=1

ξtiϕi(u) =
d∑

i=1

ηtiψi(u), where ηti =

∫
I

[Xt(u) − µ(u)]ψi(u) du,

(2.5)
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implying that
Mk(u, v) = ϕ(u)TΣk ϕ(v) = ψ(u)TΣ

(η)
k ψ(v), (2.6)

for any k ∈ Z, where Σk := E
[
ξtξ

T
t+k

]
and Σ

(η)
k := E

[
ηtη

T
t+k

]
are the finite-dimensional

variance-covariance matrices of the principal components of the two respective bases of
M. Note that boldface greek letters denote vectors, e.g. ϕ(u) :=

(
ϕ1(u), . . . , ϕd(u)

)
and

ξt :=
(
ξt1, . . . , ξtd

)
. This in particular means that ΣX(u, v) = M0(u, v) = ψ(u)TΣ

(η)
0 ψ(v).

Access to the matrix Σ
(η)
0 is what separates us from being able to estimate the covariance

of the signal curves ΣX(·, ·).
The sample versions of the principal components ηti defined in (2.5) cannot be computed

directly from the data, as the signal curves are unobservable. However, they have proxies

χti :=

∫
I

[Yt(u) − µ(u)]ψi(u) du = ηti + ε′ti, where ε′ti :=

∫
I
εt(u)ψi(u) du, (2.7)

that can be computed given the observable curves Yt(·). Conveniently, using the fact that
the noise curves (by definition) do not have serial dependence, their covariance matrices
are related via

Σ
(χ)
k := Cov [χt,χt+k] =

{
Σ

(η)
k + Cov [ε′t, ε

′
t] if k = 0,

Σ
(η)
k if k ̸= 0.

(2.8)

This means that the covariance matrices Σ
(η)
k for any k ̸= 0 can be estimated through the

proxy principal components χti.
To gain access to the lag-0 covariance matrix Σ

(η)
0 , we wish to exploit the underlying

dynamics. A simple assumption regarding the dynamics, is that the original principal
components ξt, defined in (1.2), follow the dynamics of a lag-p vector autoregressive process.
We focus on the simplest case (lag-1) first, that is, the assumption that the time series of
ξt is described by a VAR(1) model

ξt = A ξt−1 + et, where et ∼ IID (0,Ω) . (2.9)

Note the absence of a constant term for the mean, since E[ξti] = 0. As a consequence
of this assumption the random coefficients ηt also follow a VAR(1) process. The lagged
autocovariance matrices of a VAR(p)-process time series are related through the so-called
Yule-Walker equations (see Appendix B for details). For the VAR(1)-process of the prin-
cipal components ηt these Yule-Walker equations can be rearranged as

Σ
(η)
0 = Σ

(η)
1

(
Σ

(η)
2

)−1

Σ
(η)
1 . (2.10)

This is a crucial result, because this makes Σ
(η)
0 and thereby ΣX(·, ·) accessible through the

proxy principal components χti defined in (2.7).
For VAR processes with lag order p > 1 it is possible to generalize (2.10) and express

Σ
(η)
0 in terms of Σ

(η)
p ,Σ

(η)
p+1, . . . ,Σ

(η)
p+p. We have run the MISE-optimal denoising algorithm
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on the simulated data of section 4 for p = 2 and p = 3. The results in terms of denoising
performance and asymptotic behaviour were similar to the default case of p = 1 and (2.10).
This indicates that our approach is insensitive to the assumption of an underlying VAR(1)
process for the principal components ξt, even when this model is misspecified (Dahlhaus
and Wefelmeyer, 1996). Throughout this paper we assume a VAR(1) process by default,
as this choice is expected to suffer the least from small-sample estimation noise. For more
details, see Appendix E.

The above analysis is a key step for our approach, as this enables us to express the noise
covariance operator Σε(u, v) = ΣY (u, v) − ΣX(u, v), where ΣX(u, v) = ψ(u)TΣ

(η)
0 ψ(v), in

terms of quantities that can be estimated. Since ΣY (·, ·), ψ(·) and Σ
(η)
0 can be estimated

consistently, without bias from the noise curves εt(·), this provides a consistent estimator of
the noise covariance operator Σε(·, ·). This allows us to extend the FPCA framework to the
noise space Mε. Assuming that the eigenspace of Σε(·, ·) is of finite dimension, analoguous
to Xt(·) also the noise curves εt(·) can (approximately) be expanded in terms of a finite
number of eigenfunctions, in this case of the noise covariance Σε(·, ·). The orthonormal

eigenbasis ϕ
(ε)
1 (·), . . . , ϕ(ε)

dε
(·) of Σε(·, ·) forms a basis of the noise space Mε such that

εt(u) =
dε∑
i=1

ξ
(ε)
ti ϕ

(ε)
i (u), (2.11)

where the random variables ξ
(ε)
ti have the same properties as in (2.2) due to the Karhunen-

Loève theorem.

2.3 MISE-optimal denoising

Given an observed curve Yt(u) = Xt(u)+εt(u), the aim of denoising is to find a reconstruc-

tion X̂den
t (·) of the unobservable signal curve Xt(·). An example of a denoising procedure is

orthogonal denoising, where the observed curve Yt(·) is projected orthogonally onto the dy-
namical space M. In other words, for orthogonal denoising the reconstructed signal curve
is given by X̂ortho

t (u) = Y
∥
t (u) := (PMYt)(u), where PM(u, v) = ψ(u) ·ψ(v) is the operator

of the orthogonal projection onto M. Denoising performance can be measured in terms of
the “mean integrated square error” (MISE)

MISEden := E
[
(Xt(·) − X̂den

t (·))2
]
, where E [g(·)] :=

1

∆I

∫
I

E[g(u)] du, (2.12)

in the case of a bounded interval of width ∆I . As we will see, MISEortho associated with
X̂ortho

t (·) is generally not optimal in the sense that it does not minimize the MISE.
Let us now ask the question of finding a MISE-optimal denoising procedure. Con-

cretely, the goal is to find an operator P : L2(I) → L2(I) such that the denoised curve
Xopt

t (u) := (PYt)(u) minimizes the associated MISEopt defined in (2.12). Note the slight
abuse of notation here, as (2.12) already contains an estimator and here we are searching for
the operator that minimizes the MISE in (2.12), which we will then call the MISE-optimal
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denoising estimator. In this paper the space of operators P is restricted to (linear) projec-
tions onto the dynamical space, i.e. (Pf)(u) = f(u) for any function f(·) ∈ M. Combined
with the fact that a noise curve can be decomposed in a unique way in a part parallel to
the dynamical space and a part orthogonal to the dynamical space, εt(u) = ε

∥
t (u) + ε⊥t (u)

where ε
∥
t (·) ∈ M and ε⊥t (·) lies inside the orthogonal complement of M, this implies that

Xopt
t (u) = Y

∥
t (u) + (Pε⊥t )(u), where Y

∥
t (u) = Xt(u) + ε

∥
t (u).

The challenge is now to find a projection such that the parallel part of the noise curve
in Y

∥
t (·) is cancelled by (Pε⊥t )(·) in a MISE-optimal fashion. For this purpose, the latter

is expanded as

(Pε⊥t )(u) =

d∥∑
i=1

d⊥∑
j=1

αij ε
⊥
t,j ϕ

∥
i (u), (2.13)

in terms of an orthonormal eigenbasis ϕ
∥
1(·), ϕ

∥
2(·), . . . , ϕ

∥
d∥

(·) of M∥, which is the space of

noise curves ε
∥
t (·) parallel to M. Here, the ε⊥t,j are the coordinates of the perpendicular

part of the noise curves with respect to an orthonormal basis ϕ⊥
1 (·), ϕ⊥

2 (·), . . . , ϕ⊥
d⊥

(·) of the
space M⊥ of these perpendicular noise curves,

ε⊥t (u) =

d⊥∑
j=1

ε⊥t,j ϕ
⊥
j (u). (2.14)

The finite dimensionality of the subspaces M∥ and M⊥ is ensured by applying the FPCA
assumption to the noise space Mε, as formulated in (2.11).

The idea behind (2.13) is that the perpendicular noise curves can be indirectly observed

via ε⊥t (u) = Yt(u) − Y
∥
t (u). They can therefore be used as a predictor, with the parallel

noise curves ε
∥
t (·) as response variable. From this perspective, the parameters αij are the

regression coefficients and they are determined by minimizing the MISE in (2.12). We

are essentially fitting a linear model for the conditional expectation E
[
ε
∥
t (·)

∣∣ε⊥t (·)
]

that
minimizes the MISE by exploiting the covariance between the perpendicular and parallel
part of the noise curves. See Figure 1 for a simplified illustration of this approach in the
case of a bivariate time series. Note the absence of an intercept in (2.13), because the noise
curves have zero mean.

The result is a convex optimization problem with solution α̂ = −Ω∥⊥ (Ω⊥)−1 , where

Ω⊥ :=

∫
I

∫
I
ϕ⊥(u)

(
ϕ⊥(v)

)T
Σε(u, v) du dv, (2.15a)

Ω∥⊥ :=

∫
I

∫
I
ϕ∥(u)

(
ϕ⊥(v)

)T
Σε(u, v) du dv, (2.15b)

and where ϕ∥(u) :=
(
ϕ
∥
1(u), ϕ

∥
2(u), . . . , ϕ

∥
d∥

(u)
)T

and ϕ⊥(u) :=
(
ϕ⊥
1 (u), ϕ⊥

2 (u), . . . , ϕ⊥
d⊥

(u)
)T
.

The matrix Ω⊥ should be interpreted as the covariance of between the coordinates ε⊥t :=
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(
ε⊥t,1, ε

⊥
t,2, . . . , ε

⊥
t,d⊥

)T
, whereas the matrix Ω∥⊥ is the covariance between the similarly de-

fined coordinates ε
∥
t :=

(
ε
∥
t,1, ε

∥
t,2, . . . , ε

∥
t,d∥

)T
and ε⊥t . This leads to a MISE-optimal recon-

struction of the signal curves Xt(·) given by

X̂opt
t (u) = Y

∥
t (u) −

∫
I

(
ϕ∥(u)

)T
Ω∥⊥ (Ω⊥)−1ϕ⊥(v)

(
Yt(v) − Y

∥
t (v)

)
dv. (2.16)

The above formula for the MISE-optimal denoising estimator of the signal curves is the
main result of this paper. More details about the derivation of (2.16) can be found in
Appendix C, as well as an insightful illustration of the denoising formula in the context of
finite-dimensional vector spaces.

Using this denoising approach, the minimum of the MISE is

MISEmin
opt := min

α∈R(d∥×d⊥)
MISEopt = Tr

[
Ω∥

]
− Tr

[
(Ω⊥)−1 (Ω∥⊥

)T
Ω∥⊥

]
. (2.17)

It accounts for the irreducible components of the noise curves, which are present in the
general case where the noise space and the dynamical space have overlap. In the special
case of no overlap, i.e. Mε∩M = ∅, the minimum of the MISE is zero and perfect denoising
is possible (at the population level). For more details, see Appendix F.

2.4 The noise level

An important property of the curve time series (1.1) is the noise level λ ∈ [0, 1], which we
define as the relative size of the noise with respect to the observed curve variance,

λ :=
Var [εt(·)]
Var [Yt(·)]

, (2.18)

where Var [g(·)] is defined analoguous to E [g(·)] in (2.12). Note that λ is directly related
to the (integrated) signal-to-noise ratio Var [Xt(·)] /Var [εt(·)] .

A consequence of the proposed MISE-optimal denoising procedure is the ability to
estimate the noise level. Since the noise cannot be observed directly, estimating its relative
size is a nontrivial problem. Using the MISE-optimal denoised signal X̂opt

t (·), one can show
that

λ =
MISEmin

opt + E
[
(Yt(·) − X̂opt

t (·))2
]

Var [Yt(·)]
, (2.19)

consisting of quantities that all can be estimated. Note that, since the analysis of section 2.2
provides access to Σε(·, ·), an alternative way of obtaining the noise level is through λ =
Tr [Σε] /Var [Yt(·)] .
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3 Estimation and consistency

In this section we describe how MISE-optimal denoising can be applied in the default
realistic scenario, in which an observed curve time series {Yt(u)}nt=1 of length n is available.
In particular, we describe how orthonormal bases of the subspaces M, Mε, M∥ and M⊥
can be estimated and how they can be used to define an estimated operator corresponding
to MISE-optimal denoising. Furthermore, we define what we mean by consistency of a
denoising method. This section focuses on the aspects of estimation that are specific for
our denoising method, whereas more standard formulas for estimators can be found in
Appendix D.

3.1 Estimation of M
For the estimation of the dimension d of the dynamical space and the basis functions
ψ1(·), . . . , ψd(·) we ollow the approach of Bathia et al. (2010). The basis functions are
the eigenfunctions of the estimate of the operator K(·, ·) defined in (2.4). No smooth-
ing methods are used to improve estimation precision. This choice has the advantage
that MISE-optimal denoising as presented here does not make any assumptions about the
smoothness of the curves of the functional time series and can therefore also be applied to
vector-valued high-dimensional time series, for which this smoothness is generally absent.

The dimension d is estimated through a series of bootstrap tests for the eigenvalues
λ
(K)
i of the operator K(·, ·). Alternative approaches, which will not be pursued here, include

identifying a significant drop in the eigenvalues, minimizing forecast errors (Hyndman and
Ullah, 2007) and information criteria approaches (Bai and Ng, 2002; Bai and Ng, 2007;

Hallin and Lǐska, 2007). Each test works with a null hypothesis H0 : λ
(K)
d0+1 = 0 for a

different value of d0 (see Appendix D for details). We start with a d0 that is too large, for

example corresponding to an estimated eigenvalue λ̂
(K)
d0+1 that is extremely small. Then we

test and every time H0 does not get rejected we lower d0 by one, until H0 gets rejected. Our
multiple testing procedure makes it more likely to overestimate the dimension of M than
to underestimate it. This is preferable, because an overestimated dimension of M generally
leads to a smaller denoising error than an underestimated dimension. The intuition behind
this is as follows. When you project onto an erroneous direction of M the harm is relatively
small, because the to-be-projected curves Yt(·) do not have a component in that direction
(apart potentially from a contribution of the noise curves). On the other hand, when M is
mistakenly missing a direction, then an actually existing component of Yt(·) is lost during
projection and this generically causes a larger denoising error.

3.2 Estimation of Mε

Estimation of the noise space Mε starts straightforward by estimating the noise covariance
through Σε(u, v) = ΣY (u, v) − ΣX(u, v). Details can be found in Appendix D.

A bootstrap test to select d̂ε is not available, unlike for selecting d̂. Instead, we use the

12



FPCA-interpretation of the eigenvalues λ
(ε)
j of Σε(·, ·) as the variance of the j-th principal

component. If the explained variance of the (d̂ε + 1)-th eigenvalue falls below a certain
threshold τdε ∈ (0, 1), we take d̂ε as the estimate for dε. To be more precise, the condition
that determines the estimator d̂ε is

λ̂
(ε)

d̂ε+1∑
j=1 λ̂

(ε)
j

< τdε ≤
λ̂
(ε)

d̂ε∑
j=1 λ̂

(ε)
j

, (3.1)

where the sum in the denominators is taken over all (positive) eigenvalues. Note that the
estimated eigenvalues are assumed to be sorted in descending order. The threshold τdε is
set by the practitioner.

A second sublety is that in what follows Σ̂ε(u, v) = Σ̂Y (u, v) − M̂0(u, v) is replaced by

Σ̂+
ε (u, v) :=

d̂ε∑
j=1

λ̂
(ε)
j ϕ̂

(ε)
j (u)ϕ̂

(ε)
j (v), (3.2)

where ϕ̂
(ε)
j (·) is the eigenfunction of Σ̂ε(·, ·) associated with eigenvalue λ̂

(ε)
j . The reason

is that due to estimation noise Σ̂ε(·, ·) is not semi-positive definite. It is a known phe-
nomenon (see Chen et al. (2021) and references therein) that even for small values of the
estimation noise, the negative eigenvalues can remain relatively large. By removing these
negative eigenvalues through (3.2) by hand, we reduce the estimation error and improve
the denoising performance.

3.3 Estimation of M∥ and M⊥

In order to estimate an orthonormal basis of M∥, we use the fact that we have access to

the covariance of the noise curves ε
∥
t (·) parallel to M via

Ω̂
(ψ)
∥ =

∫
I

∫
I
ψ̂(u)

(
ψ̂(v)

)T

Σ̂+
ε (u, v) du dv. (3.3)

This (d̂ × d̂) matrix is an estimate of the covariance matrix of the principal components

of the curves ε
∥
t (·) with respect to the basis functions ψ(·) of M. Diagonalization leads to

d̂ orthonormal eigenvectors Ω̂
(ψ)
∥ ε̂

∥
j = λ̂

∥
j ε̂

∥
j , with λ̂

∥
1 ≥ λ̂

∥
2 ≥ . . . ≥ λ̂

∥
d̂
≥ 0, from which an

estimate for an orthonormal basis of M∥ can be constructed as

M̂∥ = span
(
ϕ̂
∥
1(·), . . . , ϕ̂

∥
d̂∥

(·)
)
, where ϕ̂

∥
j(u) = ε̂

∥
j · ψ̂(u), (3.4)

for j = 1, 2, . . . , d̂∥. Here, analogous to dε, the dimension of M∥ is selected via the conditions

λ̂
∥
d̂∥+1

Tr
[
Σ̂+

ε (·, ·)
] < τd∥ ≤

λ̂
∥
d̂∥

Tr
[
Σ̂+

ε (·, ·)
] , (3.5)
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where τd∥ ∈ (0, 1) is a threshold set by the practitioner. Note that the denominator in these
conditions representents the total variance of the noise curves. The j-th estimated eigen-
value represents the variance of the noise mode ϕ̂

∥
j(·). It is therefore prudent to compare

these eigenvalues to the total variance of the noise. If, for example, (nearly) all noise is in
the part perpendicular to M, you do not wish to take many parallel modes into account for
the regression analysis of MISE-optimal denoising. By mutually comparing the eigenval-
ues of only the parallel part of the noise, there is the risk of overestimating the number of
relevant parallel modes and thereby introducing too much estimation uncertainty, leading
to a poor performance in terms of denoising.

Estimation of the perpendicular noise space M⊥ occurs as follows. First, the time
series of the perpendicular noise curves is found through ε̂⊥t (u) =

(
(I− P̂M)ϕ̂

(ε)
i

)
(u), where

P̂M(u, v) := ψ̂(u)·ψ̂(v) and ϕ̂
(ε)
i (·) was defined in (3.2). Based on this estimated time series

the covariance Σ̂ε⊥(·, ·) is computed in the usual way. Let this estimated covariance have
orthonormal eigenfunctions ϕ̂⊥

i (·) with corresponding eigenvalues λ̂⊥i , sorted in descending
order. The dimension of the perpendicular subspace M⊥ is then selected via the conditions

λ̂⊥
d̂⊥+1

Tr
[
Σ̂+

ε (·, ·)
] < τd⊥ ≤

λ̂⊥
d̂⊥

Tr
[
Σ̂+

ε (·, ·)
] , (3.6)

where τd⊥ ∈ (0, 1) is a threshold set by the practitioner, and the functions ϕ̂⊥
1 (·), . . . , ϕ̂⊥

d̂⊥
(·)

form an estimate of the basis of M⊥.
After having estimated the spaces M,Mε,M∥ and M⊥, estimating the denoised sig-

nal curves through MISE-optimal denoising is a straightforward application of (2.15) and
(2.16). For details, see Appendix D.

3.4 Consistency of denoising procedure

In the context of curve time series as considered in this paper, the aim of denoising is to
reconstruct the signal curves Xt(·) from the observed curves Yt(·), given the data of a curve
time series {Yt(u)}nt=1 of length n. A denoising procedure is consistent if the reconstruction

X̂den
t (·) as estimated from the observed data converges to the true signal curve Xt(·),

possibly up to an irreducible observational noise component, as the length of the available
time series n increases. To be more precise, we call a denoising procedure consistent if

lim
n→∞

MISEden = MISEmin
den , (3.7)

where MISEmin
den is defined as the theoretically achievable minimum of the denoising pro-

cedure. This definition applies to both MISE-optimal denoising, with a minimum defined
in (2.17), and to orthogonal denoising, with a minimum given by MISEmin

ortho = Tr
[
Ω∥

]
.
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4 Simulation

This section illustrates MISE-optimal denoising with an application to simulated data.
Section 4.3 analyzes its performance and compares it with orthogonal denoising. Section 4.4
uses both MISE-optimal and orthogonal denoising as a pre-processing step in a forecasting
problem. We start by discussing the setup of the simulations.

4.1 Setup

The setup of our simulation is inspired by Bathia et al. (2010) and Chen et al. (2022). The
data consists of a curve time series {Yt(u)}nt=1 of n observations. Each curve is defined on
the interval I = [0, 1] and represented on a grid of 200 equidistant points on that interval.
They are constructed as the sum of a signal and a noise curve, Yt(u) = Xt(u)+εt(u), where
the signal curves are defined as

Xt(u) = gX(λ)X̃t(u), X̃t(u) =
d∑

j=1

ξtjϕj(u). (4.1)

Throughout our simulations, we work with three dynamical spaces M with respective
dimensions d = 2, 4 and 6. The principal components ξtj are simulated according to the
VAR(1)-process in (2.9). For d = 2 this is specified by1

A =

(
0.14275022 −0.61629756
−0.4615736 −0.49825869

)
, Ω =

(
0.60977113 −0.01529231
−0.01529231 0.00121252

)
. (4.2)

The procedure by which we obtained these specific matrices A and Ω for the VAR(1)-
process is as follows. We start from the requirement that the lag-0 autocovariance of
the principal components is diagonal, as stipulated by the Karhunen-Loève theorem. We
choose

Σ0 = E
[
ξtξ

T
t

]
= diag(λ1, . . . , λd), with λi = 0.2

i− 1

d− 1
+ 0.7

d− i

d− 1
, (4.3)

for i = 1, 2, . . . , d. In the case d = 2 this means λ1 = 0.7 and λ2 = 0.2. The values of A are
drawn i.i.d. from the standard normal distribution, after which the whole matrix is rescaled
to make the absolute value of the largest eigenvalue equal to 0.8. This ensures stationarity
of the VAR(1)-process, which requires that all eigenvalues of A are within the unit circle.
Finally, we use the first Yule-Walker equation to determine the covariance of the noise term,
Ω = Σ0−AΣ0A

T . Since Ω constructed in this way is not necessarily semi-positive definite,
this is checked explicitly. If it fails to be so, the process of randomly generating entries of
the matrix A is repeated until a semi-positive definite covariance matrix is obtained.

An alternative choice for our simulation setup would be to use the above procedure to
generate a new VAR(1)-process every time we run our denoising algorithm. This has as an

1See Appendix B for the specifications of the VAR(1)-processes for d = 4 and d = 6.
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advantage that the results become independent of the particulars of the specific VAR(1)-
processes for d = 2, 4, 6 that we are using. However, it will also introduce an additional
source of variance in our results. Since in most practical situations one is dealing with a
single (unknown) underlying VAR-process, this source of variance is rather unrealistic and
therefore we do not randomize over different VAR models in our data generating process.

We use ϕj(u) = cos(2πju) + sin(2πju) with j = 1, 2, . . . , d as orthonormal functions
that form a basis of the dynamical space M. To conclude our discussion of the signal
curves, we define a normalization pre-factor

gX(λ) =

√√√√ 1 − λ

Var
[
X̃t(·)

] , with Var
[
X̃t(·)

]
=

d∑
j=1

Var[ξtj] =
d∑

j=1

λj. (4.4)

Here the parameter λ = 1 − Var [Xt(·)] ∈ [0, 1] plays the role of noise level, as defined in
section 2.4.

The other part from which the observed curves {Yt(u)}nt=1 are constructed are the noise
curves,

εt(u) = gε(λ)ε̃t(u), ε̃t(u) =
dε∑
j=1

Ztj

aj−1
ϕ
(ε)
j (u), (4.5)

where Ztj ∼ N(0, 1) are mutually independent. Throughout this simulation we choose
a = 1.5 and dε = 8. This means that the noise mode with the smallest contribution,
ϕ
(ε)
dε

(·), explains about 2% of the total (integrated) variance of the noise curves. As an
(orthonormal) basis for the noise space Mε we use

ϕ
(ε)
j (u) = [cos θj + sin θj] cos(2πju) + [cos θj − sin θj] sin(2πju), (4.6)

where j = 1, 2, . . . , dε. This choice of parametrization allows us to control the orientation of
the noise space with respect to the dynamical space. The angles between the basis vectors
of M and Mε with respect to the L2-norm (A.4) are

∠
(
ϕi(u), ϕ

(ε)
j (u)

)
= arccos⟨ϕi(u), ϕ

(ε)
j (u)⟩ = δi,jθj + (1 − δi,j)π/2 (4.7)

where δi,j is the Kronecker delta. By default we will take

θj =


π/4 j = 1, 2, . . . ,min(d, dε),

0 j = min(d, dε) + 1, . . . , dε.
(4.8)

This means that each basis vector of M is at an angle of π/4 with one basis vector of Mε,
in a pairwise manner. All other pairs of basis vectors are perpendicular.

The normalization pre-factor for the noise curves is

gε(λ) =

√
λ

Var [ε̃t(·)]
, with Var [ε̃t(·)] =

dε∑
j=1

1

a2(j−1)
=

1 −
(

1
a2

)dε
1 − 1

a2

. (4.9)
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This parametrization implies Var [εt(·)] = λ. Since Var [Yt(·)] = Var [Xt(·)]+Var [εt(·)] = 1,
which confirms that λ indeed plays the role of noise level Var [εt(·)] /Var [Yt(·)] as defined
in section 2.4. By controlling λ, we control the noise level in the simulated data. Another
advantage of this parametrization is that Var [Yt(·)] is kept at a constant, enabling a more
fair comparison of denoising performance for different values of the signal-to-noise ratio.

4.2 Selection of tuning parameters

The definition of the kernel K(·, ·) in (2.4) depends on a parameter q ∈ N+, which is
the largest lag of the autocovariances that determine K(·, ·), as well as the coefficients
c1, . . . , cq. It has been reported in differents contexts (Bathia et al., 2010; Lam et al., 2011;
Chen et al., 2022) that estimation of the dynamical space M is rather insensitive to the
particular choice of q > 1, with the understanding that choosing q too large leads to a
larger finite-sample noise in the estimator K̂(·, ·). Throughout this paper, we take q = 2
and c1 = c2 = 1, i.e. K(u, v) = N1(u, v) +N2(u, v).

The thresholds introduced in Sections 3.2 and 3.3 for estimating orthonormal bases
of Mε, M∥ and M⊥ are set at τdε = τd∥ = τd⊥ = 0.01. We have experimented with
different values of the thresholds and observed that the results of our simulations are
always essentially the same. When the noise level λ is increased, the denoising performance
seems to improve for larger values of the threshold. This makes sense, because the noise
is relatively large and therefore it is easier to estimate Σε(·, ·) more reliably. Furthermore,
noise modes with relatively small eigenvalues do contribute notably when the noise level is
relatively large. The above reasons make larger threshold values for large λ both robust for
estimation noise and noticable in the observed denoising performance. Finally, notice that
when one of the thresholds is zero MISE-optimal denoising reduces to orthogonal denoising
(X̂opt

t (u) = X̂ortho
t (u) = Y

∥
t (u)). We have verified this experimentally.

4.3 Performance of the denoising procedure

We study the denoising performance of MISE-optimal and orthogonal denoising in Figure
2, where the proportion of the (integrated) variance of the remaining noise after denoising,
i.e. MISEden/λ, is plotted as a function of sample size n. The noise level is fixed at
λ = 0.2 and MISEden is estimated in-sample. For computational convenience the bootstrap
estimate for d is replaced by the true value. This is reasonable, as increasing the bootstrap
sample size will bring the proportion of erroneous estimates to zero. Every boxplot is
based on 100 independent samples. Unless stated otherwise, we will use the same setup as
described here.

Figure 2 also shows the performance of an “oracle” version of the MISE-optimal de-
noising approach, for which both M and Mε are known exactly and do not need to be
estimated. This enables us to disentangle how the estimation of these subspaces on the one
hand, and the regression step of MISE-optimal denoising on the other hand, contribute to
the overall performance of the algorithm.
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Figure 2: Proportion of the (integrated) variance of the remaining noise after
MISE-optimal denoising (red ) as a function of the sample size n. Same for
orthogonal denoising (blue ) and the “oracle” version (green ). Also shown is
the theoretical lower bound for orthogonal denoising (blue, dashed line).
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Figure 3: MISE (left panel) and proportion of the (integrated) variance of the
remaining noise (right panel) after MISE-optimal denoising (red ) as a function
of the noise level λ. Same for orthogonal denoising (blue ) and the “oracle”
version (green ).

The figure shows that MISE-optimal denoising is consistent, as all noise gets removed
when n tends to infinity. For d = 6 convergence has not yet been achieved in the plot,
but we verified it converges as well. Comparing MISE-optimal denoising with the “oracle”
version, it is clear that for small n most of the improvement comes from estimating M and
Mε, while for larger n it comes from the regression step. For small n the performance of
the “oracle” version does not increase much as a function of n (see d = 4 and d = 6), while
for the same regime the performance of MISE-optimal denoising increases significantly as
a function of n. For larger n both approaches converge at more or less the same speed.

It is worth mentioning that the performance of MISE-optimal denoising is particularly
sensitive to a correct estimation of d, the dimension of M, for which (multiple) bootstrap
tests were used. Almost all outliers in the boxplots for MISE-optimal denoising are due to
erroneous estimates of d.
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MISE-optimal denoising almost always (except for very small n and large values of
d) outperforms orthogonal denoising. Furthermore, orthogonal denoising does not lead to
perfect denoising. To highlight this fact Figure 2 also exhibits a theoretical lower bound
MISEmin

ortho (for details, see Appendix F). This bound is due to the part of the noise that
is parallel to M and therefore irreducible if you project orthogonally onto M.

Figure 3 displays the denoising performances as a function of λ, for fixed n = 800 and
d = 4. Only for very small noise levels (λ = 0.01) our method is outperformed by the
orthogonal denoising. This is explained by the fact that estimating Mε is rather noisy
for such small noise levels (note that the “oracle” version still outperforms orthogonal
denoising). However, the same plot also shows that the impact of this underperformance
is small. For such small noise levels the observed curves Yt(·) are already very close to the
signal curves and denoising does not change that.
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Figure 4: Estimation of the noise level λ, based on (2.19). The error bars
signify 1 sample standard deviation.

In Figure 4 we use (2.19) to estimate the noise level λ. Note that MISEmin
opt = 0 for

this default simulation setup. For d = 2 and d = 4 we see that this approach leads to a
consistent estimator of λ. The finite-sample bias leads to an underestimation of the noise
level. An explanation might be the cutoffs we use to estimate the dimensions of Mε, M∥
and M⊥. This is tantamount to neglecting a (small) portion of the noise. Similar to the
results of Figure 2, convergence for d = 6 is much slower.

Note that with λ = Tr [Σε] /Var [Yt(·)] we have an alternative approach to estimate λ.

Applying this method to our simulations, with Σ̂+
ε (u, v) as an estimator for Σε(u, v), leads

to a second consistent estimator of λ. However, the variance of this estimator is much larger
(in particular for d = 4 and d = 6) and therefore we did not show it in the plots.

In Figure 5 we use exactly the same setup as in Figure 2, except that now θ2 = 0
(cf. (4.8)). This means that M∩Mε ̸= ∅, i.e. the signal and noise curves have a principal
component direction in common. As a consequence, also MISE-optimal denoising has an
irreducible noise component (see Appendix F for details) given by MISEmin

opt = g2ε(λ)/a2.
This serves as a theoretical lower bound at the population level, and Figure 5 clearly
exhibits convergence towards this lower bound. This shows that also in the more general
case of M∩Mε ̸= ∅ MISE-optimal denoising is consistent.
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Figure 5: Proportion of the (integrated) variance of the remaining noise after
denoising. Similar to Figure 2, except that now θ2 = 0 (cf. (4.8)). Also shown
is the theoretical lower bound for orthogonal denoising (blue, dashed line) and
MISE-optimal denoising (black, dashed line).

Note that the “oracle” version with exact knowledge of M and Mε is performing worse
than MISE-optimal denoising, in particular for d = 2. This might seem counter-intuitive,
because the “oracle” version has more information about the underlying data. It can be
understood however by observing that θ2 = 0 reduces the dimension of M⊥ by one to
dimM⊥ = dε − 1. Due to estimation noise the algorithm does not pick up this exact
reduction and this makes Ω̂⊥ nearly singular, causing a poor denoising.
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Figure 6: Proportion of the (integrated) variance of the remaining noise af-
ter denoising. Similar to Figure 2, except that now θj = π/2 for j =
1, . . . ,min(d, dε). This mean that Mε is in the orthogonal complement of M.

Finally, we investigate the case of all noise curves lying in the orthogonal complement
of the signal curves: θj = π/2 for j = 1, . . . ,min(d, dε). In the absence of parallel noise
components, there is no dependent variable in the regression step and MISE-optimal de-
noising is equivalent to orthogonal denoising. Indeed, Figure 6 shows that both methods
have similar performances and convergence properties. MISE-optimal denoising even per-
forms slightly worse than orthogonal projection, since due to estimation noise the result of
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the regression step is not a perfectly orthonogal projection onto M.

4.4 Forecasting

Forecasting of the simulated curve time series is possible by means of the FPCA framework
and the extensive literature on forecasting of VAR models (Lütkepohl, 2005). We focus
on one-step-ahead forecasting the signal curve Xt(u). In the hypothetical situation where
the signal curves are accessible by direct observation, one can use the covariance operator
ΣX(·, ·) to find the Karhunen-Loève expansion (1.2). The factor loadings ξt can be modelled
with a VAR(p) process,

ξt =

p∑
ℓ=1

Apξt−ℓ + et, (4.10)

where et ∼ IID (0,Ω) , whose parameters can be least-square estimated. The one-step-
ahead forecast of the signal curve at time t is then given by

X̂
(p)
t (u) =

d∑
i=1

ξ̂
(p)
ti ϕi(u), (4.11)

where ξ̂
(p)
ti =

∑p
ℓ=1 Âpξt−ℓ is the optimal forecast of the factor loadings in the sense of

minimizing the MSE of the forecast error (Lütkepohl, 2005). To evaluate forecasting
performance, we define a normalized mean integrated squared error

∆F :=
E
[
(Xt(·) − X̂

(p)
t (·))2

]
E
[
(Xt(·))2

] . (4.12)

In reality the signal curves Xt(·) are usually not observable. The default workaround would
be to use the observed curves Yt(·) to compute the eigenfunctions of the Karhunen-Loève
expansion. We have seen earlier that this introduces a bias due to the noise covariance.
Since MISE-optimal denoising reduces the noise term, it is expected that using the denoised
curves X̂opt

t (·) instead will lead to a better forecasting performance.
In Table 1 one-step ahead forecast errors ∆F are computed in-sample, using five dif-

ferent approaches. On top of using the Karhunen-Loève expansion and the MISE-optimal
denoised curves X̂opt

t (·), we also use the orthogonally denoised curves Y
∥
t (·) and we intro-

duce a “mean forecast” (using the mean of the observed curves as forecast) and a “naive
forecast” (using the observed curve of the previous timestamp as forecast). Forecasting
performance is also compared with the theoretical lower bound g2X(λ)Tr [Ω] /(1− λ) of ∆F

due to the residual term in the VAR(p) process defined in (4.10). For the sake of simplicity,
since we are mainly interested in differences in forecasting performance between different
approaches, we take p = 1 and use for MISE-optimal and orthogonal denoising knowledge
of the true value of d without estimating it. We find that MISE-optimal denoising out-
performs the other forecasting strategies. The increase in performance compared to the
Karhunen-Loève approach or the orthogonal-projection approach is not large in absolute
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λ 0.05 0.2 0.4
mean forecast 0.998 ± 1.16e−4 0.999 ± 1.15e−4 0.999 ± 9.98e−5
naive forecast 2.335 ± 5.83e−3 2.527 ± 5.01e−3 2.935 ± 6.00e−3

Karhunen-Loève 0.623 ± 1.56e−3 0.669 ± 1.62e−3 0.767 ± 2.52e−3
MISE-optimal denoising 0.614 ± 1.59e−3 0.618 ± 1.56e−3 0.628 ± 1.61e−3

orthogonal denoising 0.622 ± 1.56e−3 0.654 ± 1.53e−3 0.709 ± 1.47e−3
theoretical lower bound 0.617 0.617 0.617

Table 1: Estimated forecast errors ∆F based on a VAR(1) model of the factor
loadings (including standard error of the mean). Estimations are based on a
sample of size 200 with parameters n = 800 and d = 4. The bottow row shows
the theoretical lower bound of the forecast errors.

terms, but it can be large in relative terms compared to the theoretical lower bound of the
forecast error (in particular for λ = 0.4).

Figure 7 gives more insights in the relevant factors affecting the forecasting performance
∆F. In the top panel we compare forecasting by means for Karhunen-Loève, MISE-optimal
denoising and orthogonal denoising, as a function of λ. The angles between the dynamical
and noise space are the default choice: θ1 = θ2 = θ3 = θ4 = π/4. The figure shows results
for the default VAR(1) model with d = 4, defined in (B.6), and an “alternative VAR(1)
model” with d = 4 and eigenvalues of A that are much closer to the unit circle. The
bottom panel only differs in the fact that θ2 = 0, meaning that there is an irreducible noise
component.

There are several takeaways from Figure 7. First of all, forecasting based on MISE-
optimal denoised signals outperforms the other approaches and the performance differences
can be large (see for example λ = 0.60). When the underlying VAR(1) model of the
factor loadings has eigenvalues closer to the unit circle, all forecasting strategies have an
improved performance. This makes sense, as larger eigenvalues mean a relatively stronger
serial dependence of the time series (or, equivalently, relatively smaller residuals). Finally,
comparing the two panels of Figure 7, we see that the relative performance increase due
to MISE-optimal denoising is less in the presence of irreducible noise components. This is
also as expected, since in this case the amount of noise that MISE-optimal denoising can
reduce is more limited in a relative sense.

5 Denoising empirical weather data

In this section MISE-optimal denoising is applied to empirical weather data. We consider
hourly temperature measurements on 4015 consecutive days between 17 May 2012 and 14
May 2023. This means the curve time series has length 4015 and each curve consists of 24
measurements. The measurements were taken at a weather station in De Bilt, The Nether-
lands, and are made publicly available by the Royal Netherlands Meteorological Institute
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Figure 7: Estimated forecast errors ∆F based on a VAR(1) model of the factor
loadings, as a function of the noise level λ. Estimations are based on 50 sim-
ulations with parameters n = 800 and d = 4. Standard errors are negligible.
The lower panel is the case with irreducible noise.

(KNMI).2 The data coming from this particular weather station has been “homogenized”
for eventual relocations of the weather station or changes in the measurement setup.

Before analyzing this data in the context of MISE-optimal denoising, three pre-processing
steps are taken. Curve time series in the denoising methodology are assumed to be sta-
tionary. In order to make the empirical data more stationary, a correction is made for the
seasonal trends in daily average temperature. At each day of the year an average daily
temperature is estimated by means of a weighted Gaussian kernel with a bandwidth of 15
days and this average is subtracted from the data. Secondly, an hourly mean (the µ(u)
in (1.2)) is estimated and subtracted from the data. Since this estimate turned out to
be a smooth function, no additional smoothing was needed. Finally, the demeaned data
is re-scaled such that it has a sample standard deviation of 1. This last step is strictly
speaking not required by the proposed denoising method, but it makes interpreting the
results more convenient. Note, for example, that the data now has the same variance as
the observed curves of the simulated data in section 4.

Figures 8 and 9 show the estimated orthonormal bases of the dynamical space M
and the noise space Mε, respectively, with estimated dimensions d̂ = 4 and d̂ε = 7.
Hyperparameters for estimation are the same as for the simulated data in section 4 (here
we use a bootstrap sample size of 100). The first basis function of the dynamical space,

2https://www.knmi.nl/nederland-nu/klimatologie/daggegevens
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Figure 8: Estimated basis of the dynamical space M.

ψ̂1(·), is more or less constant and can be interpreted as the persisting daily average away
from the seasonal average that was subtracted during pre-processing. Days of relative hot
or cold weather are often clustered. The second basis function, ψ̂2(·), can be interpreted
as the persisting day-night difference in temperature, away from the hourly mean µ(u)
that was subtracted from the data. It suggests that “diurnal air temperature variation”
(the difference in minimum/maximum temperature during one day) is persistent during
a series of consecutive days, which is in agreement with meteorological research (Cho et
al., 2020). Interpreting the other two basis functions seems less trivial, apart from the
fact that they seem to be odd and even, and that most variation occurs during sunrise
and sunset. It should be noted though that the eigenvalue of ψ̂1(·) (recall that the basis
functions are eigenfunctions of the operator K(·, ·)) covers 96.20% of the sum of the four
eigenvalues, and the first two eigenvalues together cover 99.96%. Finally, there does not
seem to be a non-expert interpretation of the basis functions of the noise space. Perhaps
not surprisingly, their frequency seems to be increasing gradually.
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Figure 9: Estimated basis of the noise space Mε.

We have applied MISE-optimal denoising to this data and find that d̂∥ = 3 and d̂⊥ = 5.
It is difficult to assess the validity of these estimates, as the data-generating process is
unknown. However, it seems reassuring that the estimates are not at their theoretical min-
imum (0) and maximum (d̂ε = 7) values. In Figure 10 the MISE-optimal denoised curves
are plotted for five consecutive days, alongside the original data, the orthogonally denoised
curves and curves that are obtained by applying the Karhunen-Loève expansion directly
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to the observed data without denoising. For the latter we worked with 5 eigenfunctions,
which together explain 98% of the variance of the observed data. Note that this choice
is rather arbitrary; for an increasing number of eigenfunctions the curves will converge
to the original data. Also note that, unlike MISE-optimal and orthogonal denoising, this
approach does not attempt to separate the dynamical, persistent part of the time series
from the white-noise component.
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Figure 10: MISE-optimal denoised curves for five consecutive days, alongside
the original data, the orthogonally denoised curves and curves that are ob-
tained by applying the Karhunen-Loève expansion to the observed data.

Despite the absence of knowledge of the data-generating process, it is possible to esti-
mate the proportion of the noise that has been reduced and the noise level in the original
data (i.e. λ). Consider the most general case, similar to the setup of Figure 5 of the simu-
lations, where a part of the noise is irreducible. Furthermore, assume that MISE-optimal
denoising has converged, i.e. all reducible noise has been removed. Since here d̂ = 4 and
n = 4015, looking at Figure 5 this assumption seems reasonable but not entirely accurate.
We have noted however that the first two basis functions of M cover 99.96% of the total
variance in the dynamical space, making M effectively two-dimensional and making the
assumption more appropriate. As a consequence, we can estimate the MISE of the parts
of the noise that remain after denoising and that have been removed by denoising:

MISE
(remaining)
opt = MISEmin

opt = Tr
[
Ω∥

]
− Tr

[
(Ω⊥)−1 (Ω∥⊥

)T
Ω∥⊥

]
=̂ 0.0759, (5.1a)

MISE
(removed)
opt = E

[
(Yt(·) − X̂opt

t (·))2
]

=̂ 0.0884. (5.1b)

The proportion of the variance of the noise removed by MISE-optimal denoising is then

MISE
(removed)
opt

MISE
(removed)
opt + MISE

(remaining)
opt

=̂ 0.538, (5.2)

and noise level is (cf. (2.19))

λ = MISE
(removed)
opt + MISE

(remaining)
opt =̂ 0.164, (5.3)
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where one should recall that the data has been re-scaled to have unit variance. In other
words, 53.8% of the variance of the noise is removed by MISE-optimal denoising. In the
same fashion orthogonal denoising removes 27.2% of the variance of the noise and gives the
same estimate of λ. We thus see that MISE-optimal denoising has a considerable advantage
over orthogonal denoising in the case of this empirical dataset.

Finally, the five one-step-ahead forecasting approaches of section 4.4 were mutatis mu-
tandis applied to this dataset. Figure 11 shows the resulting forecasts for five consecutive
days. In the absence of knowledge of the signal curves, assessing the forecasting perfor-
mance is not straightforward. As a proxy, we replace the signal curves Xt(·) by the observed
curves Yt(·) in (4.12). This leads to an extra contribution to the performance measure,
coming from the noise curves, which is expected to be the same for all forecasting methods
and therefore comparing forecasting performances is still possible.

mean forecast 1.000
naive forecast 0.687

Karhunen-Loève 0.401
MISE-optimal denoising 0.418

orthogonal denoising 0.406

Table 2: Estimated forecast errors ∆F, with Xt(·) replaced by Yt(·), for the
empirical weather data, based on five forecasting methods and using a VAR(1)
model for the factor loadings.

Table 2 shows that the forecasting performances of the Karhunen-Loève approach and
the two denoising approaches are comparable, while clearly outperforming the mean and
naive forecasts. The fact that MISE-optimal denoising clearly outperformed orthogonal
denoising and the Karhunen-Loève approach, which essentially does not remove any noise,
in terms of noise reduction, is not translated in a better forecasting performance. An ex-
planation could be that the amount of reduced noise is only one of the many factors that
influence forecasting performance, as Figure 7 indicated for the simulated data. Consid-
ering that for the temperature data λ =̂ 0.164 and the proportion of irreducible noise is
higher than in the lower panel of Figure 7, it seems to make sense that the forecasting
performances of the three approaches are close. Furthermore, the relative serial depen-
dence within this curve time series could also play a role; if the serial dependence is small
relative to 1/λ, it will be difficult for denoising approaches to improve on the forecasting
performance.
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Figure 11: One-day-ahead forecasts for five consecutive days based on five
different methods, alongside the original data.

6 Conclusions and discussion

By building on the DFPCA method of Bathia et al. (2010), this paper has introduced a
method to disclose the structure of the noise space of functional time series and developed
a MISE-optimal denoising procedure. By using simulated and real data, it was shown that
this method outperforms DFPCA-based orthogonal denoising and can also be used as a
pre-processing step to improve forecasting. We believe that this result can be seen as a
“blessing of dimensionality” (Gorban and Tyukin, 2018), since we can exploit the high
dimensionality of the observed data to disentangle the dynamics and the noise in a curve
time series.

An interesting open question stems from the restrictions imposed on the denoising
operators we consider for minimizing the MISE. Only Yt(·) is used to predict the underlying
signal Xt(·). Adding information about the dynamics, for example Yt−1(·), could potentially
improve the denoising further.

We should also point out a hidden assumption about the noise. We apply the FPCA
framework to the noise curves, assuming they can be approximated by a low-dimensional
decomposition. It is unclear to what extend this assumption is valid for real data, or which
impact a violation of this assumption has on MISE-optimal denoising.

Finally, let us mention a number of potential extensions and applications of MISE-
optimal denoising. Although this paper considers denoising of functional time series,
nowhere have we assumed anything about the smoothness of the curves of the time se-
ries. In other words, the ordering of the curves along the coordinate u is irrelevant. Our
method can therefore easily be extended to vector-valued, high-dimensional time series
for which the factor model approach (Lam and Yao, 2012; Cubadda and Hecq, 2022;
Dong et al., 2022) is applicable.

To verify this explicitly, we have considered denoising of curve time series where the co-
ordinate u is shuffled. In the simulations in this paper the spatial coordinate is represented
by a grid of N = 200 equidistant points u1, u2, . . . , uN on the interval I = [0, 1]. Given a
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curve time series Yt(·), with a slight abuse of notation we can then introduce a “shuffled
time series” (σY )t(ui) = Yt(uσ(i)), where σ is a permutation of the integers {1, 2, . . . , N}.
In the same fashion one can define (σX)t(ui) and (σε)t(ui). We have verified numerically
that MISE-optimal denoising applied to the shuffled time series leads to exactly the same
denoising as when applied to the original curve time series. To be more concrete, we found

that (̂σX)optt (u) = (σX̂opt)t(u), or equivalently X̂opt
t (u) =

(
σ−1(̂σX)opt

)
t
(u).

Surface time series, which are relevant for e.g. climate and environmental sciences (Guil-
las and Lai, 2010; Mart́ınez-Hernández and Genton, 2020), are another potential direction
for extending the MISE-optimal denoising approach.

Another potential application is to use MISE-optimal denoising as a pre-processing
step for functional linear regression. The hypothesis would be that using a denoised signal
outperforms existing methods, which are essentially based on DFPCA and orthogonal
denoising (Chen et al., 2022; Chang et al., 2023).
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A Curve time series, FPCA and DFPCA

This appendix contains some technical details about the definition of the curve time series
we consider, FPCA and the DFPCA approach of Bathia et al. (2010). It should be read
as supplemental to sections 1 and 2.1.

Let’s start by making the definition of the curve time series (also called “functional
time series”) under consideration more precise. We have defined the noise term in (1.1) as
the part of the observable curves Yt(·) that does not have serial dependence. In particular,
we will assume that εt(·) is a white noise sequence, as was done in, for example, Bathia et
al. (2010); Chen et al. (2022). This means that E[εt(u)] = 0 for all t and any u ∈ I, and
that Cov [εt(u), εs(v)] = 0 for any u, v ∈ I and all t ̸= s.

Furthermore, we will assume that both the signal Xt(·) and the noise εt(·) are square
integrable on the bounded interval I, and that∫

I
E
[
Xt(u)2 + εt(u)2

]
du (A.1)

is finite and well-defined. Finally, we assume stationarity of the curve time series. This
means that both

µ(u) = E[Xt(u)] and Mk(u, v) = Cov [Xt(u), Xt+k(v)] , (A.2)

where k ∈ Z, are independent of t.
We apply the framework of FPCA to the signal curves Xt(·). As a starting point, we

write the zero-lag autocovariance of the signal curves in terms of its spectral decomposition
(2.1), where λ1 ≥ λ2 ≥ . . . ≥ 0 are the eigenvalues and {ϕi(·)}∞i=1 are the corresponding
orthonormal eigenfunctions of the linear Hilbert-Schmidt operator

ΣX : L2(I) → L2(I), ΣX(f)(u) =

∫
I

ΣX(u, v)f(v) dv. (A.3)

The inner product on the Hilbert space is defined as

⟨f(·), g(·)⟩ =

∫
I
f(v)g(v) dv. (A.4)

Note that we are using the same symbol ΣX for the covariance function (2.1) and the linear
operator (A.3), in order to keep notation simple. The existence of the expansion in (2.1)
is guaranteed by Mercer’s theorem, which is applicable because ΣX(·, ·) is a continuous,
symmetric, non-negative definite kernel.

The assumption of FPCA is that the (centered) curves Xt(u) − µ(u) can be approxi-
mately represented by a finite number of eigenfunctions,

Xt(u) ≈ µ(u) +
m∑
i=1

ξtiϕi(u) =: X
(m)
t (u), (A.5)
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and that this approximation improves for increasing m, in the sense that

lim
m→∞

E

[(
Xt(u) −X

(m)
t (u)

)2
]

= 0, for all u ∈ I. (A.6)

Inspired by the framework of FPCA and similarly to Bathia et al. (2010), we assume that
the signal Xt(·) of the curve time series (1.1) under consideration is “d-dimensional”, by
which we mean that λi = 0 for i > d. In other words, we assume that the exact identity
(1.2) holds for a certain integer d.

In section 2.1 it was stated that almost any choice of the operator K(·, ·), defined in
(2.4), gives an eigenspace that coincides with the dynamical space M. In Bathia et al.
(2010) it was namely proven that for any k ≥ 1 for which the matrix Σk = E

[
ξtξ

T
t+k

]
is

full-rank, the operator

Nk(u, v) :=

∫
I
Mk(u, z)Mk(v, z) dz (A.7)

has exactly d nonzero eigenvalues and their corresponding eigenfunctions span the dynam-
ical space M. Since it can be argued (Pena and Box, 1987; Pan and Yao, 2008) that always
for some k ≥ 1, rank(E

[
ξtξ

T
t+k

]
) = d, this always provides an approach to estimating d

and M. As a consequence, the same properties hold for any operator of the form (2.4), as
long as there is a k ∈ {1, 2, . . . q} for which ck ̸= 0 and Σk is full-rank. For the sake of
simplicity, we will assume throughout this paper that Σk is of full rank for all k ≥ 1.

The advantage of using K(·, ·) instead of Nk(·, ·) in the estimation procedure is that the
former combines information about the dynamics of the underlying process from different
lags. It is an interesting question what the optimal values for q and cℓ in (2.4) are, in order
to estimate d and M. Intuitively, a small value for q discards useful information stored in
larger lags, while a large value for q introduces more noise in the estimation coming from
the larger lags. It has been reported however in different contexts (Bathia et al., 2010;
Lam et al., 2011; Chen et al., 2022) that the precise choice of K(·, ·) does not have much
impact on the quality of the estimates of d and M. We will therefore not investigate this
question any further in the remainder of this paper.

B Vector autoregressive models

This appendix contains some technical details about vector autoregressive models relevant
for our analysis, as well as a specification of the VAR(1) models used in the simulations of
section 4. See, for example, Lütkepohl (2005) for more details about VAR models.

A general VAR(1) model is defined by

ξ⃗t = α⃗ + Aξ⃗t−1 + e⃗t, (B.1)

where ξ⃗t ∈ Rd, α⃗ ∈ Rd and the d-dimensional e⃗t ∼ IID(⃗0,Ω). The matrix A is not neces-
sarily symmetric, while the matrix Ω is. A VAR process is called stationary if

E
[
ξ⃗t

]
, Var

[
ξ⃗t

]
and Σk := Cov

[
ξ⃗t, ξ⃗t+k

]
(B.2)
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are independent of t. If A has all its eigenvalues within the unit circle, then it is a stationary
process.

Let us now take the perspective of DFPCA as summarized in section 2.1. Assume that
we have chosen an operator K(·, ·) and that ψ1(·), ψ2(·), . . . , ψd(·) is the corresponding
orthonormal set of eigenfunctions. This implies that

M = span{ϕ1(u), . . . , ϕd(u)} = span{ψ1(u), . . . , ψd(u)}. (B.3)

and, furthermore, that there is an orthogonal matrix C such that ϕ(u) = Cψ(u), where
ϕ(u) = (ϕ1(u), . . . , ϕd(u))T and ψ(u) = (ψ1(u), . . . , ψd(u))T . Considering the two ex-
pansions of the demeaned signal curves in (2.5), this means that ηt = CTξt, where ξt
was defined earlier as ξt = (ξt1, . . . , ξtd)

T and ηt is defined similarly. We also have that

Σ
(η)
k = CTΣkC, where the covariance matrices were defined below (2.6). Recall that by the

Karhunen-Loève theorem Σ0 = diag (λ1, . . . , λd) (see (2.2)).
In section 2.2 we devised a method for estimating the Σε(·, ·), using the assumption

(2.9) that the principal components ξt follow a VAR(1)-process. As a consequence of the
assumption (2.9), the random coefficients ηt also follow a VAR(1) process,

ηt = A(η) ηt−1 + e
(η)
t , where e

(η)
t ∼ IID

(
0,Ω(η)

)
, (B.4)

and where A(η) = CTAC and Ω(η) = CTΩC. The constant term is also absent here, because
E[ηt] = 0 as well.

As a final step in section 2.2 we employ the Yule-Walker equations for the VAR(1)
process of the ηt:

Σ
(η)
0 = A(η)Σ

(η)
0

(
A(η)

)T
+ Ω(η), (B.5a)

Σ
(η)
k = Σ

(η)
k−1

(
A(η)

)T
for k > 0. (B.5b)

The above equations are conventionally used to estimate the model parameters of the
VAR(1) process. This so-called Yule-Walker estimator has the same asymptotic properties
as the least-squares estimator, although for small samples it sometimes performs worse
(Lütkepohl, 2005; Tjøstheim and Paulsen, 1983). We use the Yule-Walker equations dif-

ferently, namely by “reasoning backwards” and computing Σ
(η)
0 through (2.10) from the

lag-1 and lag-2 autocovariance matrices, which both can be estimated consistently.

VAR(1) models used in simulations

As explained in section 4.1, throughout our simulations we work with three dynamical
spaces M with dimensions d = 2, 4 and 6. The principal components ξtj are simulated
according to the VAR(1)-process in (2.9). The model for d = 2 is specified by in the main
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text. For d = 4 we use

A =


−0.40475218 0.56881667 −0.01251201 −0.33319225
0.36328118 0.23656237 0.17826015 0.47609812
0.04062105 −0.13439131 −0.3596354 −0.24931481
−0.31412948 0.08911365 −0.36549673 0.20076313

 , (B.6a)

Ω =


0.39050087 0.06370578 0.0340153 −0.10433378
0.06370578 0.35412048 0.05387206 0.07341199
0.0340153 0.05387206 0.2960237 −0.02286662

−0.10433378 0.07341199 −0.02286662 0.06964716

 . (B.6b)

For d = 6 we use

A =



0.37504966 0.08142893 −0.07435684 −0.03887785 0.25655029 0.25170869
−0.14126954 −0.19192149 −0.0982056 −0.37670302 0.16884435 −0.38686508
0.00451676 −0.32514261 −0.22975774 0.12353677 0.27258333 0.26566839
0.44140703 −0.08094657 0.05391765 −0.09386828 0.03307928 −0.14231888
0.3419833 −0.20556356 0.19934397 0.08967538 0.0027988 0.22842928
0.01997925 0.10989784 0.29140585 −0.007507 0.38542961 0.19185898

 ,

(B.7a)

Ω =



0.56177209 0.04343599 −0.0262747 −0.10676641 −0.0826483 −0.03922044
0.04343599 0.46386005 −0.02291322 0.01014503 0.05098028 0.02312988
−0.0262747 −0.02291322 0.36764981 −0.00149778 −0.03508077 0.01351097
−0.10676641 0.01014503 −0.00149778 0.25032321 −0.11118431 −0.00733749
−0.0826483 0.05098028 −0.03508077 −0.11118431 0.15925535 −0.02909279
−0.03922044 0.02312988 0.01351097 −0.00733749 −0.02909279 0.09806406

.

(B.7b)

C M(I)SE-optimal denoising

This appendix provides a detailed derivation and discussion of the MISE-optimal denoising
formula (2.16). It starts with a discussion of a much simpler case, namely MSE-optimal
denoising for a two-dimensional time series. Then the n-dimensional generalization is
considered, after which we discuss the case of functional time series. Because all cases
are similar in essence, starting with more simple situations provides further insights in
MISE-optimal denoising.

MSE-optimal denoising in R2

Consider a stationary time series of a bivariate random variable Y⃗t = X⃗t+ ε⃗t, with E[ε⃗t] = 0
and Ωε = Var[ε⃗t] a (2x2)-matrix. As in the rest of this paper, assume that all persistence of

the time series is contained in the “signal” part X⃗t and that ε⃗t is white noise. Furthermore,
assume that the X⃗t lie in a one-dimensional “dynamical space” M = span(u⃗), where u⃗ ∈ R2

is a unit vector. In other words, this is the case where d = dimM = 1. Note that this
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setup corresponds to the illustration of MISE-optimal denoising in Figure 1. We do not
consider the case d = 2, because then necessarily Mε ⊂ M and (as we will see below)
MSE-optimal denoising is not applicable.

Given an (observed) Y⃗t, the goal is to reconstruct the corresponding X⃗t in an MSE-
optimal fashion. In other words, we would like to find a (linear) projection P onto M that

performs this reconstruction, X⃗opt
t = PY⃗t, and such that E

[
||X⃗opt

t − X⃗t||2
]

is minimized.
Observe that the noise can be uniquely decomposed into a part parallel to M and an
orthogonal part, ε⃗t = ε⃗

∥
t + ε⃗⊥

t . The idea behing MSE-optimal denoising is as follows. With

knowledge of M and given a Y⃗ , you can compute the orthogonal part of the noise and use
this to reconstruct X⃗.

Because P is a projection onto the dynamical space, PX⃗t = X⃗t and thus X⃗opt
t =

X⃗t + P ε⃗t. Let’s write ε⃗⊥
t = ε⊥t v⃗, where v⃗ ∈ R2 is a unit vector perpendicular to u⃗. Note

that v⃗ is uniquely defined up to a sign. Since P ε⃗
∥
t = ε⃗

∥
t and considering a specific form

of the projection of the perpendicular noise, P ε⃗⊥
t = αε⊥t u⃗, the objective of minimizing the

MSE then translates into minimizing

E
[
||X⃗opt

t − X⃗t||2
]

= E
[
||P ε⃗t||2

]
= Var

[
ε
∥
t

]
+ 2αCov

[
ε
∥
t , ε

⊥
t

]
+ α2Var

[
ε⊥t

]
, (C.1)

where it was used that E[ε⃗t] = 0 and ε
∥
t was defined such that ε⃗

∥
t = ε

∥
t u⃗. The (co)variances in

(C.1) are related to the original covariance matrix via an orthonormal basis transformation
of the noise subspace Mε, Var

[
ε
∥
t

]
Cov

[
ε
∥
t , ε

⊥
t

]
Cov

[
ε
∥
t , ε

⊥
t

]
Var

[
ε⊥t

]
 = STΩεS, where S =

(
u⃗ v⃗

)
. (C.2)

The minimum of the convex cost function (C.1) is given by

α̂ = −
Cov

[
ε
∥
t , ε

⊥
t

]
Var

[
ε⊥t

] , (C.3)

leading to the MSE-optimal denoised signal

X̂opt
t = X⃗t + P̂ ε⃗t (C.4a)

= Y⃗
∥
t + P̂ ε⃗⊥

t (C.4b)

= PMY⃗t + α̂ε⊥t u⃗ (C.4c)

=

PM − u⃗
Cov

[
ε
∥
t , ε

⊥
t

]
Var

[
ε⊥t

] v⃗ T (I − PM)

 Y⃗t, (C.4d)

where Y⃗
∥
t is the part of Y⃗t parallel to the signal subspace M and PM = u⃗u⃗T is the matrix

of the orthogonal projection onto M. In the final line we used that ε⊥t = v⃗ · ε⃗t = v⃗ · ε⃗⊥
t =
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v⃗ ·
(
Y⃗t − Y⃗

∥
t

)
. The particular order of factors in (C.4d) was chosen with the prospect of

generalizing this expression to higher dimensional time series. Finally, it should be noted
that in essence the MSE-optimal denoising projection amounts to finding the MSE-optimal

linear regression function of the conditional mean E
[
ε
∥
t |ε⊥t

]
= −αε⊥t , without an intercept

because E[ε⃗t] = 0.
The MSE-optimal denoising formula (C.4d) exists provided that Var

[
ε⊥t

]
̸= 0. If this

condition is not satisfied, the noise space Mε is (effectively) one-dimensional and parallel
to M, i.e. Mε = M. Intuitively it makes sense that a denoising projection is not possible in
this situation. Given Y⃗t, since ε⊥t = 0 we cannot use the part of the noise perpendicular to
M to make a prediction for the noise parallel to M. The only remaining, sensible denoising
option is subtracting a noise bias term from Y⃗t, but since we assumed E[ε⃗t] = 0 this bias
is zero.

Observe that when the noise parallel and perpendicular to the dynamical space M are
uncorrelated the MSE-optimal projection reduces to the orthogonal projection onto M.
This is as expected, since in this case ε⊥t does not contain any information about ε

∥
t and

therefore cannot be used to project out (part of) ε
∥
t .

Also note that the minimized MSE is given by E
[
||P̂ ε⃗t||2

]
= Var

[
ε
∥
t

]
(1 − ρ2) , where

ρ is the correlation coefficient between ε
∥
t and ε⊥t . We get a perfect denoising (i.e. zero

error) in the special case of ρ = ±1, which generally corresponds to the situation ε
∥
t = γ ε⊥t

for some finite γ ̸= 0. In other words, perfect denoising occurs when there is perfect
correlation between the parallel and perpendicular parts of the noise. The noise space is
then (effectively) one-dimensional, Mε = span(w⃗) with w⃗ a unit vector, and makes an
angle with M that is given by tan−1(1/γ). In this special case the MSE-optimal projection

can take an alternative form X̂t = P̃ Y⃗t, where

P̃ =
(
u⃗ 0⃗

) (
ATA

)−1
AT and A =

(
u⃗ w⃗

)
. (C.5)

Assuming ρ = ±1 it is not difficult to show that the two projection formulas correspond,
i.e. P̂ = P̃ . From a geometric viewpoint, P̃ corresponds to a projection of Y⃗t parallel to
Mε onto M. This makes sense, as the noise is located on the line spanned by the vector
w⃗.

Note that within this special situation there exist two particularly special cases. When
γ = 0 there is no noise parallel to M, implying that w⃗ ⊥ u⃗. The projection corresponds
to the orthogonal projection onto M, meaning that P̃ = PM, because ATA = I. The
other special case is when γ → ∞. The noise then becomes parallel to M, implying that
ATA becomes a singular matrix and the projection formula for P̃ breaks down. This
corresponds to the situation Mε = M which was discussed earlier and for which no MSE-
optimal denoising exists.

MSE-optimal denoising in Rn

This section generalizes the situation of the previous section to a time series of an n-
dimensional random variable Y⃗t = X⃗t + ε⃗t. Unless stated otherwise, the assumptions of the
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previous section are still valid. It is now assumed that the signal’ X⃗t lies in a d-dimensional
dynamical space M with 0 < d < n. The case where d = n is not of interest, because in
that case necessarily Mε ⊆ M and this renders MSE-optimal denoising impossible.

As in the previous section, the noise vector is (uniquely) decomposed as ε⃗t = ε⃗
∥
t + ε⃗⊥

t ,
but now

ε⃗
∥
t =

d∥∑
i=1

ε̃
∥
t,iu⃗i, ε⃗⊥ =

d⊥∑
j=1

ε̃⊥t,j v⃗j, (C.6)

where the vectors u⃗1, . . . , u⃗d∥ and v⃗1, . . . , v⃗d⊥ form orthonormal basis of parallel and per-
pendicular noise spaces, M∥ and M⊥, respectively. It is important to realize that the two
bases combined do not necessarily form a basis of the total noise space Mε. For example, in
the case of perfect correlations between some parallel noise components ε̃

∥
t,i and some per-

pendicular noise components ε̃⊥t,j, the total noise space will have a dimension dε < d∥ + d⊥.
We will investigate this case further below. The current analysis is valid both in the ab-
sence of perfect correlations (dε = d∥ + d⊥) and in the presence of perfect correlations
(dε < d∥ + d⊥).

The covariances of the parallel and perpendicular components of the noise can be
computed from Ωε by means of coordinate transformations,

Ω∥ := Cov
[
ε̃
∥
t , ε̃

∥
t

]
= UTΩεU, (C.7a)

Ω⊥ := Cov
[
ε̃⊥t , ε̃

⊥
t

]
= V TΩεV, (C.7b)

Ω∥⊥ := Cov
[
ε̃
∥
t , ε̃

⊥
t

]
= UTΩεV, (C.7c)

where
U =

(
u⃗1 u⃗2 . . . u⃗d∥

)
, V =

(
v⃗1 v⃗2 . . . v⃗d⊥

)
. (C.8)

Note that Ω∥⊥ is a matrix of dimensions d∥ × d⊥.

We again look for a projection P that minimizes the MSE E
[
||X⃗opt

t − X⃗t||2
]

for for this
purpose we model the projection of the perpendicular noise component as

P ε⃗⊥
t =

d∥∑
i=1

d⊥∑
j=1

αij ε̃
⊥
t,ju⃗i = Uαε̃⊥t . (C.9)
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The MSE then takes the form

E
[
||X⃗opt

t − X⃗t||2
]

= E
[
||P ε⃗t||2

]
(C.10a)

=

d∥∑
i=1

Var
[
ε̃
∥
t,i

]
+ 2

d∥∑
i=1

d⊥∑
j=1

αijCov
[
ε̃
∥
t,i, ε̃

⊥
t,j

]

+

d∥∑
i=1

d⊥∑
j=1

d⊥∑
k=1

αijαikCov
[
ε̃⊥t,j, ε̃

⊥
t,k

]
(C.10b)

= Tr
[
Var

[
ε̃
∥
t

]]
+ 2 Tr

[
αTCov

[
ε̃
∥
t , ε̃

⊥
t

]]
+ Tr

[
αCov

[
ε̃⊥t , ε̃

⊥
t

]
αT

]
(C.10c)

= Tr
[
Ω∥

]
+ 2 Tr

[
αTΩ∥⊥

]
+ Tr

[
αΩ⊥α

T
]
, (C.10d)

This optimization problem is convex, since Ω⊥ is positive semi-definite and therefore
Tr

[
αΩ⊥α

T
]
≥ 0 for any nonzero matrix α. First order conditions are solved by α̂ =

−Ω∥⊥ (Ω⊥)−1 , provided Ω⊥ is invertible. This results in an MSE-optimal denoised signal

X̂opt
t = X⃗t + P̂ ε⃗t (C.11a)

= Y⃗
∥
t + P̂ ε⃗⊥

t (C.11b)

= PMY⃗t + Uα̂ε̃⊥t (C.11c)

=
[
PM − U Ω∥⊥ (Ω⊥)−1 V T (I − PM)

]
Y⃗t, (C.11d)

where in the last line we used that ε̃⊥t,j = v⃗j · ε⃗⊥t = v⃗j ·
(
Y⃗t − Y⃗

∥
t

)
. This is the general

MSE-optimal denoising result for n-dimensional time series.
Three special cases are worth to be mentioned here. First, there is the possibility that

Mε ⊆ M. This means the absence of a noise component perpendicular to the dynam-
ical space, ε⃗t = ε⃗

∥
t , and therefore the impossibility of MSE-optimal denoising. In the

formulation of (C.11d), the matrix Ω⊥ is not defined in this situation. Secondly, there is
the possibility that Mε ⊆ M⊥. The noise is fully perpendicular to the dynamical space,
ε⃗t = ε⃗⊥

t , and MSE-optimal denoising reduces to orthogonal denoising: P̂ = PM.
At last, there is the already mentioned case of perfect correlations between parallel

and perpendicular components of the noise. This implies dε < d⊥ + d∥. The general result
(C.11d) is still valid here, but there is an alternative formulation of MSE-optimal denoising.
For those components of the parallel noise that are perfectly correlated with ε⃗⊥

t , it is now
possible to project them out (completely) by projection in those directions parallel to the
noise space Mε.

Let’s illustrate this in the particular case where all parallel noise components are per-
fectly correlated with ε⃗⊥

t . In other words, consider the case where ε̃
∥
t = Γε̃⊥t for some

(d∥ × d⊥)-dimensional matrix Γ. This is equivalent to saying that the noise space and the
dynamical space do not have any directions in common, i.e. Mε ∩ M = ∅. Note that in
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this case dε = max(d∥, d⊥). If w⃗1, w⃗2, . . . , w⃗dε is an orthonormal basis of Mε, an alternative
MSE-optimal projection equivalent to (C.11d) is then given by

P̃ =
(
u⃗1 . . . u⃗d∥ 0⃗ . . . 0⃗

) (
ATA

)−1
AT where A =

(
u⃗1 . . . u⃗d∥ w⃗1 . . . w⃗dε

)
. (C.12)

In this case the denoising is perfect in the sense that the minimized MSE is equal to zero.

MISE-optimal denoising in L2(I)

In this section details about the derivation of MISE-optimal denoising for curve time series
is being discussed. It should be read as a supplement to section 2.3, where the main steps
of the derivation were presented. It can also be seen as a generalization of the previous
sections of this appendix, from finite-dimensional time series to functional time series.

As soon as the parallel and perpendicular noise spaces are properly defined, as was
done in section 2.3, the derivation of MISE-optimal denoising is rather similar to the finite
n-dimensional case of the previous section. The analogue of (C.9) was defined in (2.13).

Using that Xopt
t (u) = Xt(u) + ε

∥
t (u) + (Pε⊥t )(u), the orthonormality of the bases of M∥

and M⊥, as well as the fact that the noise curves have zero mean, one can easily find that

MISEopt = Tr
[
Ω∥

]
+ 2 Tr

[
αTΩ∥⊥

]
+ Tr

[
αΩ⊥α

T
]
, (C.13)

where Ω⊥ and Ω∥⊥ were defined in (2.15) and

Ω∥ :=

∫
I

∫
I
ϕ∥(u)

(
ϕ∥(v)

)T
Σε(u, v) du dv. (C.14)

As in the finite-dimensional case this is a convex optimization problem and the first-order
conditions are solved by α̂ = −Ω∥⊥ (Ω⊥)−1 , provided Ω⊥ is invertible. The solution of the
first-order conditions lead to the MISE-optimal denoising formula (2.16), the main result

of this paper. Note that the curves Y
∥
t (·) in this expression can be conveniently expressed

in terms of the basis vectors of M :

Y
∥
t (u) := (PMYt)(u) =

∫
I

[ψ(u) ·ψ(v)]Yt(v) dv where PM(u, v) := ψ(u) ·ψ(v)

(C.15)
is the operator for the orthogonal projection onto M.

Similar to the finite-dimensional case, there are three special situations that need to be
mentioned. In the absence of noise perpendicular to the dynamical space (Mε ⊆ M) there
is no MISE-optimal denoising possible. In the absence of noise parallel to the dynamical
space, MISE-optimal denoising is equivalend to orthogonal denoising. And finally, in the
case of perfect correlations (dε < d∥ + d⊥) some parallel noise components can be removed
completely.

In the special case that all parallel noise components are perfectly correlated with the
perpendicular noise (ε

∥
t = Γε⊥t ), one can project an observed curve Yt(· · · ) parallel to the

41



noise space Mε onto the dynamical space M and thereby remove all noise. The projection
operator that achieves this is given by

Pi(u, v) := ϕi(u)
d+dε∑
j=1

(
ATA

)−1

ij
ϕ̃j(v) (C.16)

where

ϕ̃(u) :=
(
ϕ1(u), . . . , ϕd(u), ϕ

(ε)
1 (u), . . . , ϕ

(ε)
dε

(u)
)T

and
(
ATA

)
ij

:=

∫
I
ϕ̃i(u)ϕ̃j(u) du.

(C.17)
The denoised signal is then

X̃opt
t (u) =

d∑
i=1

∫
I
Pi(u, v)Yt(v) dv. (C.18)

At the population level this alternative denoising procedure is equivalent to our MISE-
optimal denoising result (2.16). However, it turns out that at the level of finite-size samples
this method performs less well, in the sense that it produces a larger MISE. The explanation
is that ATA can quickly become nearly-singular due to estimation noise, causing large
denoising errors.

D Estimation formulas for MISE-optimal denoising

This appendix contains the (rather standard) expressions for estimators needed for MISE-
optimal denoising. It should be read as supplemental to section 3.

Estimation of M
Defining an estimator for the operator K(·, ·) is straightforward,

K̂(u, v) :=

p∑
ℓ=1

cℓN̂ℓ(u, v), (D.1)

with

N̂k(u, v) =

∫
I
M̂k(u, z)M̂k(v, z) dz (D.2)

and where

M̂k(u, v) =
1

n− k − 1

n−k∑
t=1

(
Yt(u) − Y (u)

) (
Yt+k(v) − Y (v)

)
, (D.3)

for k = 1, 2, . . . and where Y (u) = 1
n

∑n
t=1 Yt(u). Note that for k = −1,−2, . . . we have

M̂k(u, v) = M̂−k(v, u). The operator K̂(·, ·) has orthonormal eigenfunctions given by

(K̂ψ̂j)(u) =

∫
I
K̂(u, z)ψ̂j(z) dz = λ̂

(K)
j ψ̂j(u) (D.4)
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where j = 1, 2, . . . and λ̂
(K)
1 ≥ λ̂

(K)
2 ≥ . . . ≥ 0. The estimated dynamical space is then

given by M̂ = span(ψ̂1(u), ψ̂2(u), . . . , ψ̂d̂(u)), where the dimension of the dynamical space
is estimated via a bootstrap test (as was also done in Bathia et al. (2010); Chen et al.
(2022)).

For this, we do multiple tests of the form H0 : λ
(K)
d0+1 = 0 with significance level α. The

hypothesis is rejected when λ̂
(K)
d0+1 > cα, where cα is the boundary of the rejection region.

In order to apply the bootstrap procedure we define Ŷt(u) =
∑d0

j=1 χ̂tjψ̂j(u), where

χ̂tj :=

∫
I

[
Yt(u) − Y (u)

]
ψ̂j(u) du, (D.5)

and then define ε̂t(u) = Yt(u) − Ŷt(u). We then generate a bootstrap sample Y ∗
t (u) =

Ŷt(u) + ε̂∗t (u), where ε̂∗t (u) is drawn with replacement from the set {ε̂t(u)}nt=1 . Based on

this bootstrap sample, we compute the (d0+1)-th largest eigenvalue λ̂
(K,∗)
d0+1 of the associated

operator K̂∗(u, v), similar to (D.1) and (D.4). We repeat this for B bootstrap samples and

count how often λ̂
(K)
d0+1 > λ̂

(K,∗)
d0+1 occurs. If this is more than (1 − α)B times, we reject H0.

Estimation of Mε

Principal components χ̂tj associated with the basis functions ψ̂(·) were defined in (D.5).
The lagged covariance matrices of the principal components ηtj can now be estimated via

Σ̂
(η)
k =

1

n− k − 1

n−k∑
t=1

χ̂tχ̂
T
t+k, for k=1,2,. . . . (D.6)

Note that for negative lags k = −1,−2, . . . we have Σ̂
(η)
k =

(
Σ̂

(η)
−k

)T

. By means of the

Yule-Walker equations the estimator of the lag-0 covariance of the principal components
ηtj is then

Σ̂
(η)
0 =

1

2

[
Σ̂

(η)
1

(
Σ̂

(η)
2

)−1

Σ̂
(η)
1 +

(
. . .

)T
]
, (D.7)

where on the . . . there is a copy of the first term, such that Σ̂
(η)
0 is symmetric. Note that

Σ
(η)
0 is necessarily symmetric, but due to finite-sample noise this is not the case for the

estimator unless we explicitly symmetrize.
We are now in a position to estimate the covariance of the noise curves εt(·) through

Σ̂ε(u, v) = Σ̂Y (u, v) − M̂0(u, v), where M̂0(u, v) = ψ̂(u)T Σ̂
(η)
0 ψ̂(v) and

Σ̂Y (u, v) =
1

n− 1

n∑
t=1

(
Yt(u) − Y (u)

) (
Yt(v) − Y (v)

)
. (D.8)

In parallel to how the dynamical space M was estimated, we can then estimate the noise
space in terms of orthonormal eigenfunctions,

M̂ε = span
(
ϕ̂
(ε)
1 (·), . . . , ϕ̂(ε)

d̂ε
(·)

)
, where

(
Σ̂+

ε ϕ̂
(ε)
j

)
(u) = λ̂

(ε)
j ϕ̂

(ε)
j (u) (D.9)
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and λ̂
(ε)
1 ≥ λ̂

(ε)
2 ≥ . . . ≥ 0. First of all, note that in the above expression we have replaced

Σ̂ε(·, ·) by Σ̂+
ε (·, ·), which was defined in (3.2). See section 3.2 for a discussion about this

replacement.

Estimating the denoising operator

It is now straightforward to find the estimated MISE-optimal denoised signal curves,

X̂opt
t (u) = Ŷ

∥
t (u) −

∫
I

(
ϕ̂∥(u)

)T

Ω̂∥⊥

(
Ω̂⊥

)−1

ϕ̂⊥(v)
(
Yt(v) − Ŷ

∥
t (v)

)
dv, (D.10)

where Ŷ
∥
t (u) = (P̂MYt)(u) =

∫
I

[
ψ̂(u) · ψ̂(v)

]
Yt(v) dv,

Ω̂⊥ :=

∫
I

∫
I
ϕ̂⊥(u)

(
ϕ̂⊥(v)

)T

Σ̂+
ε (u, v) du dv (D.11)

and

Ω̂∥⊥ :=

∫
I

∫
I
ϕ̂∥(u)

(
ϕ̂⊥(v)

)T

Σ̂+
ε (u, v) du dv. (D.12)

E Dependence of the lag order for finding Σ
(η)
0

In Section 2.2 an estimation procedure for the autocovariance Σε(·, ·) of the noise curves
was derived by assuming that the principal components ξt of the signal curves Xt(·) follow
a VAR(1) process. Here we investigate the impact of the assumption that the lag order is
equal to 1. We first show that using a more general assumption of a VAR(p) process with
p > 1 is possible and then analyze by numerical simulation the impact of choosing a larger
lag order on MISE-optimal denoising.

If we assume that the principal components ξt follow a VAR(p) process (instead of the
VAR(1) process of (2.9)), the loadings ηt also follow a VAR(p) process:

ηt =

p∑
ℓ=1

A
(η)
ℓ ηt−ℓ + e

(η)
t , where e

(η)
t ∼ IID

(
0,Ω(η)

)
. (E.1)

The Yule-Walker equations are then given by

Σ
(η)
0 =

p∑
ℓ=1

A
(η)
ℓ Σ

(η)
ℓ + Ω(η), (E.2a)

Σ
(η)
k =

p∑
ℓ=1

Σ
(η)
k−ℓ

(
A

(η)
ℓ

)T

, for k > 0. (E.2b)

We would like to express Σ
(η)
0 in terms of autocovariance matrices Σ

(η)
k of non-zero lag,

as the latter can be estimated using the proxy principal components χtj. For this, we
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need to eliminate the model parameter matrices A
(η)
1 , A

(η)
2 , . . . , A

(η)
p from the Yule-Walker

equations. This is alike the standard Yule-Walker estimate, except that here we cannot
include Σ

(η)
0 in our estimator.

We consider the Yule-Walker equations (E.2b) for k = p+ 1, p+ 2, . . . , p+ p, and write
them as a system of linear equations for the model parameters:


Σ

(η)
p+1

Σ
(η)
p+2
...

Σ
(η)
p+p

 =


Σ

(η)
p Σ

(η)
p−1 . . . Σ

(η)
1

Σ
(η)
p+1 Σ

(η)
p . . . Σ

(η)
2

...
...

...

Σ
(η)
p+p−1 Σ

(η)
p+p−2 . . . Σ

(η)
p




(
A

(η)
1

)T(
A

(η)
2

)T

...(
A

(η)
p

)T

 . (E.3)

This system can be solved for the model parameters A
(η)
1 , A

(η)
2 , . . . , A

(η)
p and subsequently

we can use the Yule-Walker equation (E.2b) with k = p to find

Σ
(η)
0 =

[
Σ(η)

p −
p−1∑
ℓ=1

Σ
(η)
p−ℓ

(
A

(η)
ℓ

)T
]((

A(η)
p

)T)−1

. (E.4)

Hereby we have expressed Σ
(η)
0 in terms of quantities that can be estimated using the

accessible principal components χt defined in (2.7). This means that it is indeed possible
to generalize the VAR(1) assumption to higher lag orders.

As an alternative to (E.4) we could have used the Yule-Walker equations (E.2b) for
k = 2, 3, . . . , p+ 1 to arrive at the (almost) standard Yule-Walker estimates for the model

parameters, which are then expressed in terms of the unknown Σ
(η)
0 . The Yule-Walker

equation (E.2b) for k = 1 then leads to a highly non-linear equation for Σ
(η)
0 , which could

potentially be solved numerically. This has as an advantage that you need covariance
matrices up to lag p+ 1 instead of lag 2p, but as disadvantage that there is no closed-form
expression for Σ

(η)
0 . We do not pursue this option further.

Using the right-hand side of (E.4) to estimate Σ
(η)
0 , one may question its estimation

properties. A full analysis is beyond the scope of this paper, but it is worthwhile to
point out that the regular Yule-Walker estimator for the model parameters of a VAR(p)
process has the same asymptotic properties as the least-squares estimator, although for
small samples it sometimes performs worse (Lütkepohl, 2005; Tjøstheim and Paulsen,
1983). Furthermore, also for misspecified models the estimator is asymptotically optimal
(Dahlhaus and Wefelmeyer, 1996). This gives reason to believe that (E.4) is a consistent

estimator of Σ
(η)
0 .

We investigate further the dependence of our denoising algorithm on the choice of the
lag order p by re-doing the simulations of Section 4, but now assuming that the principal
components ξt obey a VAR(p) process with p = 1, 2, 3. The case p = 1 is the default and
analyzed in Section 4. The cases p = 2 and p = 3 are new and have as main novelty that
(E.4) is used to estimate Σ

(η)
0 . Apart from this, we use the same simulation setup as was

used in Figure 2.
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Figure 12: Proportion of the (integrated) variance of the remaining noise after
MISE-optimal denoising as a function of the sample size n, for different lag
orders (p = 1, 2, 3) of the assumed underlying VAR(p) process of the principal
components ξt.

The results are plotted in Figure 12. Although the denoising performance for p = 1
seems marginally better (in particular for small sample size n), the order of magnitude of
the proportion of the (integrated) variance of the remaining noise and its asymptotic trend
are similar for p = 1, 2, 3. This suggests that MISE-optimal denoising is insensitive to the
choice of lag order p of the assumed VAR(p) model for the principal components.

Of course, making p even larger will introduce more estimation noise, as the estimation
of Σ

(η)
0 requires estimates of Σ

(η)
k for k = p + 1, . . . , p + p, and autocovariance matrices

with larger lags will suffer more from finite-sample estimation noise. This seems to be the
reason that the denoising performance for p = 1 is marginally better. Furthermore, this is
why we choose the VAR(1) assumption by default.

F Irreducible components of the noise curves

In this section we compute a theoretical lower bound for MISEopt, defined in (2.12), in
the context of the simulation of section 4 in the case of θ2 = 0 (cf. (4.8)). This means
that M∩Mε ̸= ∅, i.e. the signal and noise curves have a principal component direction in
common. Since MISE-optimal denoising cannot filter out this component, the noise has in
irreducible component and there will be a non-zero lower bound for the MISE. Let’s focus
on the simulation setup of section 4, and in particular on the basis functions of M and
Mε. They were defined as follows:

ϕj(u) = cos(2πju) + sin(2πju), j = 1, . . . , d, (F.1)

ϕ
(ε)
k (u) = [cos θk + sin θk] cos(2πku) + [cos θk − sin θk] sin(2πku), j = 1, . . . , dε, (F.2)
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For simplicity we assume d < dε, as is the case in all our simulations. If we decompose the
noise modes as ϕ

(ε)
k (u) = ϕ

∥
k(u) + ϕ⊥

k (u) with respect to M, we find

ϕ
∥
k(u) =

{
cos(θk)ϕk(u), k = 1, . . . , d,

0 k = d+ 1, . . . , dε,
(F.3a)

ϕ⊥
k (u) =

{
sin(θk) [cos(2πku) − sin(2πku)] , k = 1, . . . , d,

ϕ
(ε)
k (u) k = d+ 1, . . . , dε.

(F.3b)

Note first that if θj ̸= π/2 for j = 1, . . . , d, we have that M∥ = M and we can use the
functions ϕj(·) as a basis for M∥. Let’s assume this is the case here. Furthermore, let’s
for now assume that θj ̸= 0 for j = 1, . . . , d, which implies that dim(M⊥) = dε and as an
orthonormal basis for M⊥ we can use{

cos(2πku) − sin(2πku), k = 1, . . . , d,

ϕ
(ε)
k (u) k = d+ 1, . . . , dε.

(F.4)

Eventually we are interested in the case θ2 = 0, for which dim(M⊥) = dε − 1 and the
second basis function in the above basis is removed. But for now we assume θ2 ̸= 0.

Using that

Σε(u, v) = E[εt(u)εt(v)] = g2ε(λ)
dε∑
j=1

1

a2(j−1)
ϕ
(ε)
j (u)ϕ

(ε)
j (v) (F.5)

we can find (
Ω∥

)
i,j

=

∫
I

∫
I
ϕi(u)ϕj(v)Σε(u, v) du dv = δi,j

g2ε(λ)

a2(j−1)
cos2(θj) (F.6)

for i, j = 1, . . . , d, and similarly

(Ω⊥)i,j = δi,j
g2ε(λ)

a2(j−1)
×
{

sin2(θj) j = 1, . . . , d,
1 j = d+ 1, . . . , dε,

(F.7)

for i = 1, . . . , dε, and (
Ω∥⊥

)
i,j

= δi,j
g2ε(λ)

a2(j−1)
cos(θj) sin(θj), (F.8)

where in the last expression i = 1, . . . , d and j = 1, . . . , dε.
The minimal value for the MISE is given in (2.17). Plugging in the above expressions

we find that all terms in Tr
[
Ω∥

]
are canceled by the second trace and MISEmin

opt = 0. In
this case perfect denoising is possible (at the population level).

Let’s now focus on the case where θj = 0 for all j ∈ J0 ⊆ {1, . . . , d}. The term Tr
[
Ω∥

]
in MISEmin

opt is unaltered, but in the second trace the terms corresponding to the j ∈ J0

are missing. This leads to

MISEmin
opt = g2ε(λ)

∑
j∈J0

1

a2(j−1)
. (F.9)
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The case discussed in section 4.3 is when J0 = {2}.
Denoising by means of orthogonal projection onto the dynamical space M also leads

to an irreducible noise component, provided the noise space is not entirely inside the
orthogonal complement of the dynamical space. Assuming the general simulation setup of
section 4 this lower bound can be computed analogously to how (F.9) was computed and
is given by

MISEmin
ortho = Tr

[
Ω∥

]
= g2ε(λ)

∑
j∈J0

cos2(θj)

a2(j−1)
. (F.10)
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