
Supplementary Material to “Estimation of the Continuous
and Discontinuous Leverage Effects”

A Preliminary Technical Results

First we decompose X as Xt = X ′t +X ′′t , where

X ′′t = δ ? µt =

∫ t

0

∫
R
δ(s, x)µ(ds, dx),

X ′t = Xt +

∫ t

0

a′sds+

∫ t

0

σs−dWs with a′s = as −
∫
|δ(t,x)|≤κ

δ(t, x)λ(dx).

(A.1)

Observe that X ′ contains no jump component hence has continuous paths almost surely, while

X ′′t =
∑

s≤t ∆Xs
13 is a well-defined pure jump process.

Henceforth, we denote by K a positive constant that may change from line to line and we write

Kq in case we want to emphasize its dependency on a particular parameter q.

A.1 Localization

As shown in, for example, Jacod and Protter (2011), localization is a simple but very powerful

standard procedure to prove limit theorems for discretized processes over a finite time interval.

Adopting the localization procedure, it is sufficient to prove our results only under a stronger version

of Assumption (H), and the same results will remain valid under the original Assumption (H). In

particular, we can strengthen Assumption (H) by replacing the locally boundedness conditions

by boundedness, and we only need to prove our results under the boundedness condition. More

precisely, we set

13This equivalence is a direct result of (2.1.13) and (2.1.14) in Jacod and Protter (2011), with δ(s, x) ≡ x.
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Assumption (SH): We have (H) and, for some constant Λ and all (ω, t, x),

|at(ω)| ≤ Λ, |σt(ω)| ≤ Λ, |Xt(ω)| ≤ Λ;

|ãt(ω)| ≤ Λ, |σ̃t(ω)| ≤ Λ, |b̃t(ω)| ≤ Λ;

|δ(ω, t, x)| ≤ Λ(γ(x) ∧ 1), |δ̃(ω, t, x)| ≤ Λ(γ̃(x) ∧ 1);

the coefficients of σ̃ are also bounded by Λ.


(A.2)

With all the above conditions satisfied, we can choose γ, γ̃ < 1. Additionally, if we further set

the truncation parameter κ = 2Λ, then (2.1) and (2.2) can be written in more concise forms, as

follows:

Xt = X0 +

∫ t

0

asds+

∫ t

0

σs−dWs + δ ? (µ− ν)t, (A.3)

σt = σ2
0 +

∫ t

0

ãsds+

∫ t

0

σ̃sdWs +

∫ t

0

b̃sdBs + δ̃ ? (µ̃− ν̃)t, (A.4)

and consequently, by Itô’s formula, for any integer p ≥ 2,

σpt =

∫ t

0

ã(p)sds+

∫ t

0

p σp−1
s−

(
σ̃sdWs + b̃sdBs

)
+ g(p) ? (µ̃− ν̃)t, (A.5)

where ã(p)s and g(p) are the coefficients of the drift and jump components, respectively. To save

space, we do not display their expressions here. Next, for some t0, s > 0 and integer n, one can

get the following result by applying Itô’s formula to Ys = X ′t0+s −X ′t0 :

Y n
s =

∫ s

0

(
nY n−1

u a′t0+u +
n(n− 1)

2
Y n−2
u (σ2

t0+u−)
)
du+ n

∫ s

0

Y n−1
u (σt0+u−)dWt0+u. (A.6)

In what follows, we will frequently use the above two equations.

A.2 Auxiliary Results

Lemma 1. Denote by σ̂
′2 the estimator to σ2 based on X ′ instead of X. Let un = nb∧(1−b), where

b satisfies condition (3.2). At any time ti we have

√
un

(
σ̂
′2
i+ − σ2

i+, σ̂
′2
i− − σ2

i−

)
Lst−−→ (V +

i , V
−
i ), (A.7)
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where (V +
i , V

−
i ) is a vector of normal random variables independent of F . They have zero F-

conditional covariance and

E((V ±i )2|F) =
2

c
σ4
i±1{b∈(0,1/2]} +

c

3

(d〈σ2, σ2〉t
dt

∣∣∣
t=t±i

)
1{b∈[1/2,1)}. (A.8)

Proof. Applying Itô’s formula to f(x) = x2, we get the following equation, after some elementary

calculations:

σ̂
′2
i+ − σ2

i+ =
1

kn∆n

∑
j∈I+n (i)

(
2

∫ tnj

tnj−1

(X ′s −X ′tnj−1
)dX ′s +

∫ tnj

tnj−1

(σ2
s − σ2

i+)ds
)
. (A.9)

Step 1. We are going to show that√
kn ξ

n
i+(1) :=

√
kn

kn∆n

∑
j∈I+n (i)

2

∫ tnj

tnj−1

(X ′s −X ′tnj−1
)dX ′s

Lst−−→ N (0, 2σ4
i+).

First of all, by Itô’s formula, it is easy to verify that

ξ
′′n
i+ (1) :=

σ2
i+

kn∆n

∑
j∈I+n (i)

2

∫ tnj

tnj−1

∫ s

tnj−1

dWudWs =
σ2
i+

kn

∑
j∈I+n (i)

((
∆n
jW√
∆n

)2

− 1

)
,

where {∆n
jW√
∆n
} is an i.i.d. sequence of random variables, with mean and variance being 1 and 2,

respectively. Moreover, note that for any martingale M , irrespective of whether M = W or whether

M is orthogonal to W , we have that√
kn E

(
ξ
′′n
i+ (1)(Mi+k+n −Mi) | Fi

)
= 0.

Consequently, one readily sees that
√
kn ξ

′′n
i+ (1)

Lst−−→ N (0, 2σ4
i+). Next, define

ξ
′n
i+(1) :=

1

kn∆n

∑
j∈I+n (i)

2

∫ tnj

tnj−1

∫ s

tnj−1

σuσsdWudWs.
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Then,

(
E(|ξ′ni+(1)− ξ′′ni+ (1)|)

)2 ≤ E(|ξ′ni+(1)− ξ′′ni+ (1)|2)

=
4

(kn∆n)2

∑
j∈I+n (i)

E

(∫ tnj

tnj−1

∫ s

tnj−1

(σuσs − σ2
i+)2duds

)
≤ K∆n.

Therefore,

lim sup
n

√
kn E(|ξ′ni+(1)− ξ′′ni+ (1)|) ≤ lim sup

n
K
√
kn∆n = 0,

implying that
√
kn(ξ

′n
i+(1)− ξ′′ni+ (1))

P−→ 0. What remains to be shown is that√
kn(ξni+(1)− ξ′ni+(1))

P−→ 0.

A sufficient condition is that

lim sup
n

√
knE(|ξni+(1)− ξ′ni+(1)|) = 0.

The difference can be decomposed as follows:

ξni+(1)− ξ′ni+(1) =
1

kn∆n

∑
j∈I+n (i)

2

∫ tnj

tnj−1

∫ s

tnj−1

(
asaudu ds+ asσudWuds+ σsaudu dWs

)
.

Note that when the drift coefficient of X ′ is zero, ξni+(1) = ξ
′n
i+(1). So, the above sufficient condition

amounts to requiring that the drift term does not affect the asymptotic distribution of ξni+(1).

Intuitively, in the high-frequency setting, the magnitude of the drift is much smaller compared to

the diffusion, hence is negligible. Formally, we have

knE(|ξni+(1)− ξ′ni+(1)|2) ≤ Kkn
(kn∆n)2

 ∑
j∈I+n (i)

∆3
n +

∑
j,l∈I+n (i)

∆4
n

 = K∆n(1 + kn∆n).

Then the desired result follows immediately.
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Step 2. Now we turn to the limiting behavior of the second part of (A.9). The result to be

proved is

1√
kn∆n

ξni+(2) :=
1

(kn∆n)3/2

∑
j∈I+n (i)

∫ tnj

tnj−1

(σ2
s − σ2

i+)ds
Lst−−→ N (0, 1) ·

√
1

3

d〈σ2, σ2〉t
dt

∣∣∣
t=t±i

.

Different from the previous step, the (volatility) jump component is involved in the integrand

above. Recall (A.5) and denote θ = g(2) for brevity. For any ε ∈ (0, 1], we have θ ? (µ̃ − ν̃) =

A(ε) +B(ε) + C(ε), where

A(ε) = (θ1{|θ|>ε}) ? µ̃, B(ε) = (θ1{|θ|≤ε}) ? (µ̃− ν̃), C(ε) = −(θ1{|θ|>ε}) ? ν̃.

By the localization procedure, we can assume that |θ(ω, t, z)| ≤ Γ(z). Let

γ̃ε =

∫
Γ(z)≤ε

Γ(z)vλ̃(dz),

where the constant v ∈ [0, 2] controls the jump activity of the volatility process. We are going to

give some estimates of the magnitude of these three processes. First, note that ∆n
jA(ε) must be

zero if there is no jump larger than ε over the interval ((j − 1)∆n, j∆n). Hence,

Pnj−1(∆n
jA(ε) 6= 0) ≤ Pnj−1

(
(∆n

j (1{|Γ|>ε} ? µ̃) > 0
)

= Enj−1

(
∆n
j (1{|Γ|>ε} ? µ̃)

)
= ∆n

∫
Γ>ε

λ̃(dz) ≤ ∆n

∫
Γ>ε

Γ(z)v

εv
λ̃(dz) ≤ K∆nε

−v,
(A.10)

where the last inequality results from the assumption that
∫

Γ(z)vλ̃(dz) <∞. Second, by the BDG

inequality and the property of Γ, we obtain

Enj−1((∆n
jB(ε))2) ≤ ∆n

∫
Γ≤ε

Γ(z)v Γ(z)2−v λ̃(dz) ≤ ∆nγ̃εε
2−v. (A.11)

Third, if v ≤ 1, i.e., the volatility jump component has finite variation,

Enj−1(|∆n
jC(ε)|) ≤ K∆n.
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Otherwise, we have

|θ|1{|θ|>ε} = ε
|θ|
ε

1{ε≤|θ|≤1} + |θ|1{|θ|>1} ≤ ε

(
|θ|
ε

)v
1{ε≤|θ|≤1} + |θ|1{|θ|>1}.

Notice that θ1{|θ|>1} ? ν̃ is the compensator of a compound Poisson process, hence it is of integrable

variation. Consequently, we get

Enj−1(|∆n
jC(ε)|) ≤ ∆n

(
ε1−v

∫
ε≤|Γ|≤1

Γ(z)vλ̃(dz) +

∫
Γ>1

Γ(z)λ̃(dz)

)
≤ K∆nε

1−v.

Together, we have

Enj−1(|∆n
jC(ε)|) ≤ K∆nε

−(v−1)+ . (A.12)

Now we can rewrite the σ2 process as

σ2
t = σ2

0 +

∫ t

0

ã(2)sds+

∫ t

0

2σs−

(
σ̃sdWs + b̃sdBs

)
+ A(ε)t +B(ε)t + C(ε)t.

By a similar argument as in the previous step, we can easily obtain

1√
kn∆n

ξ
′n
i+(2) :=

1

(kn∆n)3/2

∑
j∈I+n (i)

∫ tnj

tnj−1

∫ s

tni

2σu−

(
σ̃udWu + b̃udBu

)
ds

Lst−−→ N (0, 1) ·

√
1

3

d〈σ2, σ2〉t
dt

∣∣∣
t=t±i

,

and

1

(kn∆n)3/2

∑
j∈I+n (i)

∫ tnj

tnj−1

∫ s

tnj−1

budu ds
P−→ 0.

In particular, note that when a martingale M satisfies M = W or M = B, we have

1√
kn∆n

E
(
ξ
′n
i+(2)(Mi+kn −Mi) | Fi

)
= Op(

√
kn∆n)→ 0.
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When M is orthogonal to W and B, the above conditional expectation is zero. What is left now

to be proved is that

1

(kn∆n)3/2

∑
j∈I+n (i)

∫ tnj

tnj−1

(
θ ? (µ̃− ν̃)s − θ ? (µ̃− ν̃)i+

)
ds

P−→ 0.

Recall that by localization, the spot variance is bounded, so is its jump part. Hence, (A.10) yields

1

(kn∆n)3/2

∑
j∈I+n (i)

∫ tnj

tnj−1

E|A(ε)s − A(ε)i+|ds

≤ 1

(kn∆n)3/2

∑
j∈I+n (i)

∫ tnj

tnj−1

Kkn∆nε
−vds = K

√
kn∆nε

−v.

Additionally, (A.11) and (A.12) yield

E

 1

(kn∆n)3/2

∑
j∈I+n (i)

∫ tnj

tnj−1

(
B(ε)s∧u −B(ε)i+

)
ds

2

≤ 1

(kn∆n)3

∑
j∈I+n (i)

∑
l∈I+n (i)

∫ tnj

tnj−1

∫ tnl

tnl−1

E|B(ε)s∧u −B(ε)i+|2ds du

≤ 1

(kn∆n)3

∑
j∈I+n (i)

∑
l∈I+n (i)

∫ tnj

tnj−1

∫ tnl

tnl−1

Kkn∆nγ̃εε
2−vds = Kγ̃εε

2−v,

and

1

(kn∆n)3/2

∑
j∈I+n (i)

∫ tnj

tnj−1

E|C(ε)s − C(ε)i+|ds

≤ 1

(kn∆n)3/2

∑
j∈I+n (i)

∫ tnj

tnj−1

Kkn∆nε
−(v−1)+ds = K

√
kn∆nε

−(v−1)+ .

To sum up, we have

lim
ε→0

lim sup
n

1

(kn∆n)3/2

∑
j∈I+n (i)

∫ tnj

tnj−1

E|θ ? (µ̃− ν̃)s − θ ? (µ̃− ν̃)i+|ds

≤ lim
ε→0

lim sup
n

K(
√
kn∆nε

−v +
√
γεε2−v +

√
kn∆nε

−(v−1)+) = 0.
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Then the desired result readily follows.

Step 3. One can verify that the previous results hold for ξni−(1) and ξni−(2) too, by similar

arguments. Furthermore, the pairwise covariance of
√
knξ

n
i+(1),

√
knξ

n
i−(1), ξni+(2)/

√
kn∆n and

ξni−(2)/
√
kn∆n vanishes asymptotically. Hence, by letting un = nb∧(1−b) ∝

√
kn ∧ 1√

kn∆n
, one gets

the joint convergence stated in the current lemma.

Lemma 2. For i 6= j and |i− j| ≤ kn, we have

Ei∧j−kn
(
(∆n

iX
′)(∆n

jX
′)RiRj

)
= Op(∆

2
n), (A.13)

where Ri is one of {σ̂′2i+, σ̂
′2
i−,∆

n
i σ

2} and Rj is one of {σ̂′2j+, σ̂
′2
j−,∆

n
j σ

2}.

Proof. First of all, it is easy to verify the result when both Ri = ∆n
i σ

2 and Rj = ∆n
j σ

2. Next,

when R· 6= ∆n
· σ

2, it amounts to proving that

Ei∧j−kn
(
(∆n

iX
′)(∆n

jX
′)(∆n

uX
′)2(∆n

vX
′)2
)

= Op(∆
4
n),

where u ∈ I±n (i) and v ∈ I±n (j). The explicit expression on the right-hand side depends on the

relative order of i, j, u, v and whether u = v. But its order with regard to ∆n remains the same in

all cases. To save space, we just show the calculation in one typical case. Let i < j < u < v, and

denote (i− kn)∆n as τ0. We have

Eτ0
(
(∆n

iX
′)(∆n

jX
′)(∆n

uX
′)2(∆n

vX
′)2
)

= Eτ0
(
(∆n

iX
′)(∆n

jX
′)(∆n

uX
′)2(σ2

tnv−1−
)
)
∆n(1 + op(1))

= Ei−kn
(
(∆n

jX
′)(∆n

l X
′)(σ4

tnu−1−
)
)
∆2
n(1 + op(1))

= Eτ0
(
(∆n

iX
′)(σ4

tnj−1−
)(a′tnj−1

+ 4σ̃tnj−1
)
)
∆3
n(1 + op(1))

= (σ4
τ0−)

((
(a′τ0)

2 + Γ(X′,a)
τ0

+ 4a′τ0σ̃τ0
)

+ 4
(
a′τ0σ̃τ0 + Γ(X′,σ̃)

τ0
+ 4σ̃2

τ0

))
∆4
n(1 + op(1)),

where Γ
(X′,Y )
t := Et

(
d〈X ′, Y 〉t/dt

)
. Finally, the proof when only one of Ri and Rj equals ∆n

i σ
2 or

∆n
j σ

2 is similar. We omit the details.
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B Proofs of the Main Theorems

B.1 Continuous Leverage Effect

Using the localization procedure, we can and will assume (SH). First of all, we decompose the

volatility process into three parts, as follows:

σ2
t = σ2,c

t + σ2,j
t + σ2,d

t ,

where σ2,c
t is the continuous part, σ2,j

t is the co-jump part and σ2,d
t is the disjoint jump part. Next,

we decompose the estimation error as follows:

[X̂, σ2]Ct − [X, σ2]Ct = T (αn)nt + V n
t +D(1)nt +D(2)nt +D(3)nt , (B.1)

where

T (αn)nt =

bt/∆nc−kn∑
i=kn+1

(
∆n
iXαn(σ̂2

i+ − σ̂2
i−)−∆n

iX
′(σ̂
′2
i+ − σ̂

′2
i−)
)
,

V n
t =

bt/∆nc−kn∑
i=kn+1

(
∆n
iX
′(σ̂
′2
i+ − σ̂

′2
i−)−∆n

iX
′∆n

i σ
2
)
,

D(1)nt =

bt/∆nc−kn∑
i=kn+1

∆n
iX
′(∆n

i σ
2,d + ∆n

i σ
2,j
)
,

D(2)nt = −
kn∑
i=1

∆n
iX
′∆n

i σ
2 −

bt/∆nc∑
i=bt/∆nc−kn+1

∆n
iX
′∆n

i σ
2,

D(3)nt =

bt/∆nc∑
i=1

∆n
iX
′∆n

i σ
2,c −

∫ t

0

2σ2
s−σ̃sdt.
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B.1.1 Proof of Theorem 1

In fact, from the subsequent proof of Theorem 3, we haveV
n
t = Op(1/

√
un),

D(j)nt = op(1/
√
un),

implying that they all converge to zero in probability as n goes to infinity. In order to prove

T (αn)nt
P−→ 0, it is sufficient to prove that

E
(∣∣∆n

iXαn(∆n
jXαn)2 −∆n

iX
′(∆n

jX
′)2
∣∣) = ψn∆2

n,

instead of ψn∆2
n/
√
un. Consequently, it is sufficient to have (2 − r)$ ≥ 1/2, which amounts to

$ ≥ 1
2(2−r) .

B.1.2 Proof of Theorem 3

We prove the central limit theory first. In words, we are going to show that the properly scaled

truncation error and discretization error converge to zero in probability, while the properly scaled

volatility estimation error converges stably in law to the limiting process.

Step 1. To prove
√
un T (αn)nt

u.c.p.−−−→ 0, it suffices to show that

lim sup
n→∞

√
un E(|T (αn)nt |) = 0.

Since

√
un |T (αn)nt | =

√
un

∣∣∣ bt/∆nc−kn∑
i=kn+1

(
∆n
iXαn(σ̂2

i+ − σ̂2
i−)−∆n

iX
′(σ̂
′2
i+ − σ̂

′2
i−)
) ∣∣∣

≤
bt/∆nc−kn∑
i=kn+1

∑
j∈I±(i)

n

√
un

kn∆n

∣∣∆n
iXαn(∆n

jXαn)2 −∆n
iX
′(∆n

jX
′)2
∣∣ ,
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it is sufficient to prove that

E
(∣∣∆n

iXαn(∆n
jXαn)2 −∆n

iX
′(∆n

jX
′)2
∣∣) = ψn∆2

n/
√
un,

where ψn converges to zero as n goes to infinity.

Consider the function F (xi, xj) = xi(xj)
2 and the following vectors:

X̃n
i,j(1) =

1√
∆n

(
∆n
iX,∆

n
jX
)
,

X̃n
i,j(2) =

1√
∆n

(
∆n
iX,∆

n
jX
′) ,

X̃n
i,j(3) =

1√
∆n

(
∆n
iX
′,∆n

jX
′) .

For simplicity, denote αn/
√

∆n by vn and define

φni,j(1) = Fvn
(
X̃n
i,j(1)

)
− Fvn

(
X̃n
i,j(2)

)
, φni,j(2) = Fvn

(
X̃n
i,j(2)

)
− Fvn

(
X̃n
i,j(3)

)
,

where Fv(x1, x2) = F (x1, x2)
∏2

i=1 1{|xi|≤v}. Then we have

∆n
iXαn(∆n

jXαn)2 −∆n
iX
′(∆n

jX
′)2 =

(
φni,j(1) + φni,j(2)

)
∆3/2
n .

A look at the proof of Lemma 13.2.6 in Jacod and Protter (2011) shows that it does not make

an essential difference to use vectors of non-adjacent increments. Therefore, applying that lemma

with r < 1,m = s = 1, s′ = p′ = 2, yields, for l = 1, 2,

Eτni−1

(
|φni,j(l)|

)
≤
(

∆
2−r
2

n + ∆(2−r)$
n

)
ψn = ψn∆(2−r)$

n

(
1 + ∆(2−r)(1/2−$)

n

)
.

Thus, it is sufficient to have (2− r)$ ≥ 3/4, which amounts to $ ≥ 3
4(2−r) .

Step 2. We are going to show that
√
un D(1)nt is asymptotically negligible. First, notice

that the quadratic covariation between a continuous semimartingale and a pure jump process is

identically zero. Therefore, we have

D(1)nt
P−→ [X ′, σ2,d + σ2,c]t = 0.
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Next, from Theorem 5.4.214 in Jacod and Protter (2011), we know that

D(1)nt = Op(
√

∆n).

Then it readily follows that

lim sup
n

√
un E

(
|D(1)nt |

)
≤ K

√
un∆n −→ 0.

Hence,
√
unD(1)nt is asymptotically negligible.

Step 3. In this step, we are going to prove the following result for j = 2, 3:

√
un D(j)nt

u.c.p.−−−→ 0.

By the Cauchy-Schwarz inequality, we obtain

E
(
|∆n

iX
′∆n

i σ
2|
)
≤
√
E
(
(∆n

iX
′)2
)
E
(
(∆n

i σ
2)2
)
≤ K∆n.

Then
√
un D(2)nt

u.c.p.−−−→ 0 readily follows from the fact that

lim sup
n→∞

√
un E(|D(2)nt |) ≤ lim sup

n→∞
K
√
unkn∆n = 0.

Next, Itô’s formula yields

(X ′t+s −X ′t)(σ
2,c
t+s − σ

2,c
t ) =

∫ s

0

2σ2
t+r−σ̃t+rdr +

∫ s

0

(X ′t+r −X ′t)dσ2
t+r

+

∫ s

0

(σ2,c
t+r − σ

2,c
t )dX ′t+r.

Consequently, we obtain

Ei−1

(
∆n
iX
′∆n

i σ
2,c −

∫ tni

tni−1

2σ2
t−σ̃tdt

)
= K∆3/2

n ,

Ei−1

(
(∆n

iX
′∆n

i σ
2,c −

∫ tni

tni−1

2σ2
t−σ̃tdt)

2
)
≤ K∆2

n.

14The assumptions of this theorem are satisfied in the current setting. Also note that this theorem applies to

multi-dimensional semimartingales, hence can be used here.
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Let ζni =
√
un(∆n

iX
′∆n

i σ
2,c −

∫ tni
tni−1

2σ2
t−σ̃tdt). Note that ζni is Ftni -measurable. Then the above

equations yield

bt/∆nc∑
i=1

Ei−1

(
ζni
)

= K
√
un∆n −→ 0,

bt/∆nc∑
i=1

Ei−1

(
(ζni )2

)
≤ K un∆n −→ 0.

Hence, Lemma 4.1 in Jacod (2012) implies that
√
un D(3)nt

u.c.p.−−−→ 0.

Step 4. In this step we analyze
√
un V

n
t . Define

ξni =
√
un

(
∆n
iX
′(σ̂
′2
i+ − σ̂

′2
i−)−∆n

iX
′∆n

i σ
2
)
.

The variable ξni has a vanishing F(i−1)∆n-conditional expectation, but it is not Fi∆n-measurable.

To induce “some conditional independence” of the successive summands, we split the sum over i

into big blocks of size m̃kn (m̃ will eventually go to infinity, to ensure that the summation over

these big blocks is asymptotically equivalent to the summation over all blocks), separated by small

blocks of size 2kn; cf. Section 12.2.4 of Jacod and Protter (2011). The condition on m̃ is:

m̃→∞ and m̃kn∆n → 0.

More specifically, define I(m̃, n, l) = (l − 1)(m̃+ 2)kn + 1. Then the l-th big block contains ξni for

all i between I(m̃, n, l) + kn + 1 and I(m̃, n, l) + (m̃+ 1)kn, and the total number of such blocks is

ln(m̃, t) = b bt/∆nc−1
(m̃+2)kn

c. Let

ξ(m̃)ni =

(m̃+1)kn∑
r=kn+1

ξI(m̃,n,i)+r, Z(m̃)nt =

ln(m̃,t)∑
i=1

ξ(m̃)ni ,

ξ̃(m̃)ni =
kn∑

r=−kn

ξI(m̃,n,i)+r, Z̃(m̃)nt =

ln(m̃,t)∑
i=2

ξ̃(m̃)ni .
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So
√
un V

n
t = Z(m̃)nt + Z̃(m̃)nt . We are going to show that Z̃(m̃)nt is asymptotically negligible first.

By successive conditioning, we get

EI(m̃,n,i)−kn−1

(
ξI(m̃,n,i)+r

)
= EI(m̃,n,i)−kn−1

(
∆n
iX
′√un

(
(σ̂
′2
i+ − σ2

i )− (σ̂
′2
i− − σ2

i−1)
))

= EI(m̃,n,i)−kn−1

(
∆n
iX
′Op(ψn) +Op(∆n)

√
un(σ̂

′2
i− − σ2

i−1)
)

= Op(ψn∆n),

EI(m̃,n,i)−kn−1

(
(ξI(m̃,n,i)+r)

2
)

= EI(m̃,n,i)−kn−1

(
(∆n

iX
′)2un

(
(σ̂
′2
i+ − σ2

i )− (σ̂
′2
i− − σ2

i−1)
)2
)

= ρI(m̃,n,i)−kn−1∆n + op(∆n).

As before, ψn → 0, and it may change from line to line. Observe that, for any given n and m̃,

there is no overlap among the sequence ξ̃(m̃)ni . Then it is easy to verify that

EI(m̃,n,i)−kn−1(ξ̃(m̃)ni ) = Op(kn∆nψn),

and

EI(m̃,n,i)−kn−1(ξ̃(m̃)ni )2 = EI(m̃,n,i)−kn−1

(
kn∑

r=−kn

(ξI(m̃,n,i)+r)
2

)

+ EI(m̃,n,i)−kn−1

(
kn∑

r,j=−kn

1{j 6=r}ξI(m̃,n,i)+rξI(m̃,n,i)+j

)

= Op(kn∆n) +Op(k
2
n∆2

n).

The first term on the right-hand side of the expression above is Op(kn∆n). For the second term,

when j > r, by successive conditioning, we get

EI(m̃,n,i)−kn−1

(
ξI(m̃,n,i)+rξI(m̃,n,i)+j

)
= EI(m̃,n,i)−kn−1

(
∆n
rX
′Op(1)EI(m̃,n,i)+j−1(∆n

jX
′Op(1))

)
,

where Op(1) comes from the standardized estimation error of spot volatility. Irrespective of whether

∆n
jX
′ is correlated with its associated Op(1) or not, the conditional expectation of their product is
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Op(∆n). The same argument applies to ∆n
rX
′. Hence, the above result readily follows. Then, as

long as m̃ goes to infinity, Lemma 4.1 in Jacod (2012) yields that Z̃(m̃)nt
u.c.p.−−−→ 0.

Next, notice that the variable ξ(m̃)ni has vanishing FI(m̃,n,i)-conditional expectation, and is

FI(m̃,n,i+1)-measurable. That is, it behaves like a martingale difference. We are going to prove that

ln(m̃,t)∑
i=1

E
((
ξ(m̃)ni

)2
∣∣∣FI(m̃,n,i)) P−→

∫ t

0

η2
sds,

ln(m̃,t)∑
i=1

E
((
ξ(m̃)ni

)4
∣∣∣FI(m̃,n,i)) P−→ 0,

ln(m̃,t)∑
i=1

E
(
ξ(m̃)ni ∆n

i,m̃M
∣∣∣FI(m̃,n,i)) P−→ 0,

(B.2)

where ∆n
i,m̃M = M(I(m̃,n,i)+(m̃+1)kn)∆n −M(I(m̃,n,i)+kn+1)∆n . The remaining difficulty is that the ξni

may have overlaps within the big block. To deal with this, recall that I−n (i) = {i− kn, . . . , i− 1} if

i > kn and I+
n (i) = {i+ 1, . . . , i+ kn}, which define two local windows of length kn∆n just before

and after the time point i∆n. Let I±n (i) be the union of them. Furthermore, let

J(m̃, n, i, j) = {I(n, m̃, i) + kn + 1, . . . , I(m̃, n, i) + (m̃+ 1)kn} \ (I±n (j) ∪ j).

With these notations, we can decompose the conditional second moment of ξ(m̃)ni , as follows:

E
((
ξ(m̃)ni

)2
∣∣∣FI(m̃,n,i))

=

(m̃+1)kn∑
r=kn+1

(m̃+1)kn∑
j=kn+1

E
(
ξI(m̃,n,i)+r ξI(m̃,n,i)+j|FI(m̃,n,i)

)
=

(m̃+1)kn∑
r=kn+1

∑
j=r

E
(
ξI(m̃,n,i)+r ξI(m̃,n,i)+j|FI(m̃,n,i)

)
+

(m̃+1)kn∑
r=kn+1

∑
j∈I±n (r)

E
(
ξI(m̃,n,i)+r ξI(m̃,n,i)+j|FI(m̃,n,i)

)

+

(m̃+1)kn∑
r=kn+1

∑
j∈J(m̃,n,i,r)

E
(
ξI(m̃,n,i)+r ξI(m̃,n,i)+j|FI(m̃,n,i)

)
=: H(m̃, 1)ni +H(m̃, 2)ni +H(m̃, 3)ni .

56



From Lemmas 1 and 2, we have

ln(m̃,t)∑
i=1

H(m̃, 1)ni =

ln(m̃,t)∑
i=1

(m̃+1)kn∑
r=kn+1

E
(
(ξI(m̃,n,i)+r)

2|FI(m̃,n,i)
) P−→

∫ t

0

η2
sds,

ln(m̃,t)∑
i=1

H(m̃, 2)ni =

ln(m̃,t)∑
i=1

(m̃+1)kn∑
r=kn+1

∑
j∈In(r)

E
(
ξI(m̃,n,i)+r ξI(m̃,n,i)+j|FI(m̃,n,i)

)
≤

ln(m̃,t)∑
i=1

Km̃k2
n∆2

n → 0.

Next, notice that, when j ∈ J(m̃, n, i, r), there is no overlap between ξI(m̃,n,i)+r and ξI(m̃,n,i)+j.

Hence, by successive conditioning, we obtain

ln(m̃,t)∑
i=1

H(m̃, 3)ni =

ln(m̃,t)∑
i=1

(m̃+1)kn∑
r=kn+1

∑
j∈J(m̃,n,i,r)

E
(
ξI(m̃,n,i)+r ξI(m̃,n,i)+j|FI(m̃,n,i)

)
≤

ln(m̃,t)∑
i=1

Km̃2k2
n∆2

nψn → 0.

The calculation of the fourth moments is even more tedious; we present partial results and omit
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the remainder of the calculations for brevity:

ln(m̃,t)∑
i=1

(m̃+1)kn∑
r=kn+1

E
(
(ξI(m̃,n,i)+r)

4|FI(m̃,n,i)
)

=

ln(m̃,t)∑
i=1

(m̃+1)kn∑
r=kn+1

E
(
(∆n

I(m̃,n,i)+rX
′)4Op(1)|FI(m̃,n,i)

)
≤

ln(m̃,t)∑
i=1

(m̃+1)kn∑
r=kn+1

K∆2
n = Kt∆n → 0,

ln(m̃,t)∑
i=1

(m̃+1)kn∑
r=kn+1

∑
j 6=r

E
(
(ξI(m̃,n,i)+r)

2 (ξI(m̃,n,i)+j)
2|FI(m̃,n,i)

)
=

ln(m̃,t)∑
i=1

(m̃+1)kn∑
r=kn+1

∑
j 6=r

E
(
(∆n

I(m̃,n,i)+rX
′)2(∆n

I(m̃,n,i)+jX
′)2Op(1)|FI(m̃,n,i)

)
≤

ln(m̃,t)∑
i=1

Km̃2k2
n∆2

n = Ktm̃kn∆n → 0.

As for the last equation in (B.2), we first note that it holds when M is orthogonal to W and B.

Besides, when M = W or M = B, according to the proof of Lemma 1, one can verify by successive

conditioning that

ln(m̃,t)∑
i=1

E
(
ξ(m̃)ni ∆n

i,m̃M
∣∣∣FI(m̃,n,i)) ≤ Op(

√
kn∆n)

P−→ 0.

In any other case, M can be decomposed into the sum of two components, one driven by W and

B and the other orthogonal to B and W . Thus the result readily follows.

Finally, as for the consistency of V̂ n
T (X,αn), first note it has been well established that

4∆n

15

bt/∆nc−kn∑
i=kn+1

(∆n
iXαn√
∆n

)6 P−→ 1

c

∫ t

0

σ6
s− ds.
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On the other hand, Aı̈t-Sahalia and Jacod (2014) proved that

1

kn

bt/∆nc−kn∑
j=kn+1

(3

2

(
σ̂2
j+ − σ̂2

j−
)2 − 6

kn
σ̂4
j

)
P−→ 〈σ2, σ2〉t.

Based on this result, one can show that

c

kn

bt/∆nc−kn∑
j=kn+1

(
∆n
jXαn

)2
((
σ̂2
j+ − σ̂2

j−
)2 − 2

3(kn∆n)2

∑
l∈I±n (j)

(∆n
l X)4

)
P−→ 2c

3

∫ t

0

σ2
s− d〈σ2, σ2〉s.

Therefore, V̂ n
t (X,αn) is a consistent estimator of the asymptotic variance

∫ t
0
η2
sds. This completes

the proof.

B.2 Discontinuous Leverage Effect

B.2.1 Proof of Theorem 2

The results of Theorem 2 can be seen to follow as a corollary to Theorem 3.1 in Jacod and Todorov

(2010), by verifying that our case (i) satisfies condition (c) and our case (ii) satisfies condition (a)

of Theorem 3.1 in Jacod and Todorov (2010), with our particular choice of F .

B.2.2 Proof of Theorem 4

For each integer m ≥ 1, let (S(m, q) : q ≥ 1) be the successive jump times of the counting process

µ

(
[0, t]×

{
x :

1

m
< γ(x) ≤ 1

m− 1

})
.
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In fact, the two-parameter sequence (S(m, q) : m, q ≥ 1) can be relabeled in such a way that it

becomes a single sequence (Tp : p ≥ 1), which exhausts the jumps of X. Furthermore, we define

T tm = {p : ∃ p ≥ 1 and m′ ∈ {1, . . . ,m} s.t. Tp = S(m′, q) ≤ bt/∆nc∆n};

i(n, p) = the unique integer such that Tp ∈ (tni−1, t
n
i ];

Jn,m,t = {i(n, p) : p ∈ T tm}, J ′n,m,t = {1, . . . , [t/∆n]} \ Jn,m,t;

T−(n, p) = tni(n,p)−1, T+(n, p) = tni(n,p);

Ωn,m,t =
⋂

p 6=q,p,q∈T tm

{Tp > bt/∆nc∆n or |Tp − Tq| > 2 ∆n}.

Note that, for any m, we have

lim
n→∞

P(Ωn,m,t) = 1.

Therefore, it is sufficient to restrict our attention to the set Ωn,m,t.

Let Am := {x : γ(x) ≤ 1/m} and γm :=
∫
Am

γ(z)rλ(dz). Then we further decompose X ′′ (recall

equation (A.1)) as X ′′ = L(m) + J(m), where
L(m)t =

∫ t

0

∫
Am

δ(ω, u, x)µ(du, dx),

J(m)t =

∫ t

0

∫
(Am)c

δ(ω, u, x)µ(du, dx).

Furthermore, let X ′(m) = X ′ + L(m).

Now the estimation error can be written as

[X̂, σ2]Dt − [X, σ2]Dt = H(1)nt +
7∑
j=2

H(m, j)nt ,
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where

H(1)nt =

bt/∆nc−kn∑
i=kn+1

(∆n
iX

αn)
[(
σ̂2
i+ − σ̂2

i−
)
−
(
σ̂
′2
i+ − σ̂

′2
i−
)]
,

H(m, 2)nt =
∑

i∈Jn,m,t

[
(∆n

iX
αn)−∆XTp

][(
σ̂
′2
i+ − σ̂

′2
i−
)
−∆σ2

Tp

]
,

H(m, 3)nt =
∑
p∈T tm

∆XTp

[(
σ̂
′2
i+ − σ̂

′2
i−
)
−∆σ2

Tp

]
,

H(m, 4)nt =
∑

i∈J ′n,m,t

[
(∆n

iX
αn)−∆n

i L(m)αn
][

(σ̂
′2
i+ − σ̂

′2
i−)−∆n

i σ
2
]
,

H(m, 5)nt =
∑

i∈J ′n,m,t

(∆n
i L(m)αn)

[(
σ̂
′2
i+ − σ̂

′2
i−
)
−∆n

i σ
2
]
,

H(m, 6)nt =
∑

i∈J ′n,m,t

(∆n
iX

αn)∆n
i σ

2 −
∑
p/∈T tm

∆XTp1{|∆XTp |>αn}∆σ
2
Tp ,

H(m, 7)nt =
∑
p/∈T tm

−∆XTp1{|∆XTp |≤αn}∆σ
2
Tp .

For simplicity, denote by h(m, j)ni the i-th addend of H(m, j)nt .

Step 1. We start by considering the first three terms. First of all, note that on the set Ωn,m,t, for

any given m, the number of elements of T tm is locally finite. Hence, the following joint convergence

result holds

√
un

(
σ̂
′2
i+ − σ2

Tp+, σ̂
′2
i− − σ2

Tp−

)
i∈Jn,m,t

Lst−−→ (V +
i , V

−
i )i∈Jn,m,t .

Moreover, for any i(n, p) ∈ Jn,m,t, we have

|∆n
i(n,p)X

αn −∆Xtp |
P−→ 0.

Consequently, on the one hand, we obtain that for any t

lim
m→0

lim sup
n→0

√
un E

(
|H(m, 2)nt |

)
≤ lim

m→0
lim sup
n→0

K
∑

i∈Jn,m,t

E
(
|(∆n

iX
αn)−∆XTp|

)
= 0.
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Thus, Lemma 4.1 in Jacod (2012) yields that
√
un |H(m, 2)nt |

u.c.p.−−−→ 0. On the other hand, we

have15

√
unH(m, 3)nt

Lst−−→ Dt(m) :=
∑
p∈T pm

∆XTp(V
+
Tp
− V −Tp).

Observe that

Ẽ
(
|Dt(m)−Dt|2|F

)
≤ K

∑
s≤t

|∆Xs|2r1{|∆Xs|≤1/m}.

The right-hand side goes to 0 a.s. as m→∞. Thus, we have Dt(m)
u.c.p.−−−→ Dt, as m goes to infinity.

Next, note that for any given ε > 0, we can choose m = 1/ε 16 so that for sufficiently large n,

we have

[X̂, σ2]Dt (ε)− [X, σ2]Dt (ε) = H(1; ε)nt +
3∑
j=2

H(m, j)nt ,

where

H(1; ε)nt :=

bt/∆nc−kn∑
i=kn+1

(∆n
iX

(ε∨αn))
[(
σ̂2
i+ − σ̂2

i−
)
−
(
σ̂
′2
i+ − σ̂

′2
i−
)]
.

When n is sufficiently large, we have αn < ε, yielding ∆n
iX

(ε∨αn) ≡ ∆n
iX

ε. Employing the results

of Step 1 of the previous subsection and (A.12) (with v replaced by r), it is straightforward to

verify by successive conditioning that

√
un E

(
|H(1; ε)nt |

)
≤ K
√
un

bt/∆nc−kn∑
i=kn+1

(
E
(
|∆n

iX
ε|
)
∆(2−r)$ψn + ∆nε

−(r−1)+E
(
|σ̂2
i− − σ2

i−|
))

≤ K
√
un∆(2−r)$ψn.

15A similar argument can be found, for example, in the proof of Lemma 5.4.10 of Jacod and Protter (2011)
16The requirement that m is an integer is just for convenience and not crucial. In fact, one can replace 1/m by

qm, where the sequence {qm}∞m=1 consists of all rational numbers within (0, 1] in descending order. Then, for any

ε ∈ (0, 1], one can choose a subsequence {qmk
} that converges to ε.
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Then, in order to obtain

√
unH(1; ε)nt

u.c.p.−−−→ 0,

it is sufficient to have (2− r)$ ≥ 1/4. To guarantee $ < 1/2, we must require r < 3/2. Therefore,

we have proved the second statement of the theorem. As for H(1)nt , adopting a similar argument,

we obtain (upon replacing ε by αn)

√
un E

(
|H(1)nt |

)
≤ K
√
un∆[(2−r)−(r−1)+]$ψn.

Thus, it is sufficient to have r < 5/4 to make the right-hand side asymptotically negligible, while

keeping $ < 1/2.

Step 2. To analyze H(m, 4)nt , we need additional notation. For some l > 1, we denote

qn = [α−ln ] and we suppose that n is sufficiently large so that 1/qn < αn < 1/m. Next, define

A′n = Am ∩ (Acqn), Nn
t = µ([0, t]× A′n),

L′t =

∫ t

0

∫
A′n

δ(ω, u, z)µ(du, dz), L(qn) = L(m)− L′,

G(n, i) = {|∆n
iX
′| ≤ αn/4} ∩ {|∆n

i L(qn)| ≤ αn/4} ∩ {∆n
iN

n ≤ 1}.

Accordingly, let X ′(qn) = X ′ + L(qn).

We then evaluate the probability of ω ∈ G(n, i). First, when r < 1, it is easy to see that∫
Aqn

δ(t, x)λ(dx) =

∫
Aqn

δrδ1−rλ(dx) ≤ K∆l$(1−r)
n

∫
Aqn

δrλ(dx) = K∆l$(1−r)
n γqn .

And, for any % ≥ r, we have

Ei−1

(
|∆n

iX
′|%
)
≤ K(∆%/2

n ) and Ei−1

(
|∆n

i L(qn)|%
)
≤ ∆1+l$(%−r)

n γqn .

These results, applied with % = 4
1−2$

to the first term and with % = 1+lr$
$(l−1)

to the second one, and

Markov’s inequality yield

P(|∆n
iX
′| > αn/2) ≤ K∆2

n and P(|∆n
i L(qn)| > αn/2) ≤ K∆2

n.
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Second, Nn is a Poisson process with parameter λ(A′n) ≤ Kγmq
r
n. Together with αn = α∆$

n ,

we obtain

P(∆n
iN

n = 1) ∝ ∆1−rl$
n γm and P(∆n

iN
n ≥ 2) ≤ K∆2−2rl$

n γ2
m.

Let Ω(G)n,t =
⋂

1≤i≤[t/∆n] G(n, i). Then, as long as l < 1/r, hence 2$rl < rl < 1, we have

P(Ω(G)cn,t) ≤
bt/∆nc∑
i=1

P(G(n, i)c) ≤ tK∆1−2rl$
n −→ 0.

Hence, it is sufficient to prove the desired results on the intersection of Ωn,m,t and Ω(G)n,t.

Some elementary calculations show that∣∣|x+ y|1{|x+y|>α} − |x|1{|x|>α}
∣∣ ≤ |y| · 1{|x+y|>α,|x|>α} + 0 · 1{|x+y|≤α,|x|≤α}

+ |x+ y| · 1{|x+y|>α,|x|≤α} + |(x+ y)− y| · 1{|x+y|≤α,|x|>α}

≤ |y| · 1{|x+y|>α∪ |x|>α} + |x| · 1{|x+y|>α,|x|≤α} + |x+ y| · 1{|x+y|≤α,|x|>α}

≤ |y| · 1{|x+y|>α∪ |x|>α} + α · 1{|x+y|>α,|x|≤α} + α · 1{|x+y|≤α,|x|>α}

≤ (|y|+ α) · 1{|x+y|>α∪ |x|>α}.

Observe that on the set G(n, i), we have

|∆n
iX
′(qn)| ≤ |∆n

iX
′|+ |∆n

i L(qn)| ≤ αn/2 < αn.

Therefore, for any i ∈ J ′(n,m, t), if ∆n
iN

n = 0, then

|∆n
i L(m)| = |∆n

i L(qn)| ≤ αn/4,

|∆n
iX| = |∆n

iX
′(m)| = |∆n

iX
′(qn)| ≤ αn/2.

Then it is obvious that, conditional on ∆n
iN

n = 0, ∆n
iX

αn = 0 and ∆n
i L(m)αn = 0. Consequently,

taking x = ∆n
i L(m)αn , y = ∆n

iX
′ and α = αn, the elementary inequality array above yields

E
(
|(∆n

iX
αn)− (∆n

i L(m)αn)|
)
≤ E

(
|∆n

iX
′|+ αn

)
P(∆n

iN
n = 1) + 0 · P(∆n

iN
n = 0)

≤ K(∆1/2
n + ∆$

n )∆1−rl$
n γm ≤ K∆1+(1−rl)$

n γm.
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Together with the fact that
√
un|σ̂

′2
i± − σ2

i±| = Op(1), we obtain by successive conditioning

√
un E

(
|h(m, 4)ni |

)
≤ K E

(
|(∆n

iX
αn)− (∆n

i L(m)αn)|
)

+K E
(√

un|σ̂
′2
i− − σ2

i−|
)
∆1+(1−rl)$
n γm

≤ K∆1+(1−rl)$
n γm.

Thus, it readily follows that

√
un E

(
|H(m, 4)nt |

)
≤

∑
i∈J ′n,m,t

√
un E

(
|h(m, 4)nt |

)
≤ tK∆$(1−rl)

n γm.

So the sufficient condition for
√
unH(m, 4)nt to be asymptotically negligible is r < 1, which enables

us to choose l ∈ (1, 1/r).

As for H(m, 5)nt , as long as r < 1, we obtain the following inequality by successive conditioning

and the boundedness of the respective moments

√
un E

(
|H(m, 5)nt |

)
≤ K

∑
i∈J ′n,m,t

(
E
(
|∆n

i L(m)αn|
)

+ ∆nγmE
(√

un |σ̂
′2
i− − σ2

i−1|
))
≤ tKγm.

We first let n and next m go to infinity, and get

lim sup
n→∞

√
un E

(
|H(m, 5)nt |

)
≤ lim sup

n→∞
tKγm = 0.

Therefore, we can conclude that
√
unH(m, 5)nt is also asymptotically negligible.

Step 3. Finally, we consider the last two terms, H(m, 6)nt and H(m, 7)nt . We continue to work

on the intersection of Ωn,m,t and Ω(G)n,t. Recall that by definition, on each G(n, i) with i ∈ J ′n,m,t,

there is at most one Tp such that |∆XTp | is possibly larger than αn. Therefore, H(m, 6)nt can be

written as

H(m, 6)nt =
∑
p/∈T tm

((
∆n
i(n,p)X

αn −∆Xαn
Tp

)
∆σ2

Tp + ∆n
i(n,p)X

αn
(
∆n
i(n,p)σ

2 −∆σ2
Tp

))
.
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By applying the Cauchy-Schwarz inequality and Jensen’s inequality, we obtain that

√
un E

( ∑
p/∈T tm

∣∣(∆n
i(n,p)X

αn −∆Xαn
Tp

)
∆σ2

Tp

∣∣)
≤
√
un E

( ∑
p/∈T tm

(
∆n
i(n,p)X

αn −∆Xαn
Tp

)2
∑
p/∈T tm

(
∆σ2

Tp

)2
)1/2

≤
√
un

(
E
∑
p/∈T tm

(
∆n
i(n,p)X

αn −∆Xαn
Tp

)2
∑
p/∈T tm

(
∆σ2

Tp

)2
)1/2

≤K
√
un

(
E
∑
p/∈T tm

(
∆n
i(n,p)X

αn −∆Xαn
Tp

)2
)1/2

.

Note that |∆n
i(n,p)X

αn−∆Xαn
Tp
| ≤ |∆n

i(n,p)X
′(αn)|. Consequently, the above quantity is smaller than

K
√
un

(
E
∑
p/∈T tm

(
∆n
i(n,p)X

′(αn)
)2
)1/2

≤K
√
un

(
Kt∆n +

∑
i

∫ i∆n

(i−1)∆n

∫
Aαn

δ2−rδr F (dx)
)1/2

≤K
√
un

(
t∆n + t∆$(2−r)

n

∫
Am

δr F (dx)
)1/2

≤ K
√
t γm ∆$(2−r)/2−1/4

n .

By a similar procedure, we also obtain

√
un E

( ∑
p/∈T tm

∣∣∆n
i(n,p)X

αn
(
∆n
i(n,p)σ

2 −∆σ2
Tp

)∣∣)
≤K
√
un

(
E
∑
p/∈T tm

(
∆n
i(n,p)X

αn
)2
)1/2

≤ K
√
t γm ∆$(2−r)/2−1/4

n .

To sum up, we have

√
un E

(
|H ′(m, 6)nt |

)
≤ K
√
t γm∆$(2−r)/2−1/4

n .
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Applying a similar procedure to H(m, 7), we also get

√
un E

(
|H(m, 7)nt |

)
≤ K
√
un

(
E
∑
s≤t

(
∆Xαn

s

)2
∑
s≤t

(
∆σ2

s

)2
)1/2

≤K
√
un

(
E
∑
s≤t

(
∆Xαn

s

)2
)1/2

≤ K
√
un

(∫ t

0

∫
Aαn

δ2−rδr F (dx)
)1/2

≤K
√
t γm∆$(2−r)/2−1/4

n .

Now it becomes clear that to ensure that the last two terms are asymptotically negligible, the

sufficient condition is

$(2− r) ≥ 1

2
.

Then $ < 1/2 implies that we must have r < 1. Hence, part (i) has also been proved.

B.3 Total Leverage Effect

B.3.1 Proof of Theorem 5

Analogous to previous proofs, we can make the following decomposition:

̂[X, σ2]t − [X, σ2]t = R(1)nt +R(2)nt +R(3)nt ,

where

R(1)nt =

bt/∆nc−kn∑
i=kn+1

(∆n
iX)

[(
σ̂2
i+ − σ̂2

i−
)
−
(
σ̂
′2
i+ − σ̂

′2
i−
)]
,

R(2)nt =

bt/∆nc−kn∑
i=kn+1

(∆n
iX
′ + ∆n

iX
′′)
[(
σ̂
′2
i+ − σ̂

′2
i−
)
−∆n

i σ
2
]
,

R(3)nt =

bt/∆nc−kn∑
i=kn+1

∆n
iX∆n

i σ
2 − [X, σ2]t.
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As before, we need r < 3/2 and $ ≥ 1
4(2−r) to ensure that

√
unR(1)nt is asymptotically negligible.

Moreover, R(2)nt can be further decomposed into two parts, which, after scaling by
√
un, converge

to
∫ t

0
ηs dBs and Dt (asymptotically independent of each other), respectively. Finally, R(3)nt is of

order
√

∆n, which implies that
√
unR(3)nt is also asymptotically negligible. The proof is complete.

B.4 Market Microstructure Noise

B.4.1 Proof of Theorems 6 and 7

For this proof, we decompose X̂ into X̄ + ε̄ (with obvious definitions in view of Assumption 1).

Then the estimator becomes:

[X̂, σ2]CT =
n−knM∑
i=knM+1

∆n
i X̂αn(σ̂2

i+ − σ̂2
i−)

=
n−knM∑
i=knM+1

∆n
i X̄αn

1

knM∆n

( ∑
j∈J+

n (i)

(∆n
j X̄αn)2 −

∑
j∈J−n (i)

(∆n
j X̄αn)2

+
∑

j∈J+
n (i)

2(∆n
j X̄αn)(∆n

j ε̄αn)−
∑

j∈J−n (i)

2(∆n
j X̄αn)(∆n

j ε̄αn)

+
∑

j∈J+
n (i)

(∆n
j ε̄αn)2 −

∑
j∈J−n (i)

(∆n
j ε̄αn)2

)
+Op(knM∆n).

The Op(knM∆n) terms can be easily verified, thanks to the independence between X̄ and ε̄, and

the fact that ε̄2 = Op(
1
M

). In fact, all the terms in the last two lines of the equation above converge

to 0 in probability. But since they will contribute to the asymptotic variance, we keep them here.

To prove Theorems 6 and 7, we will go through very similar steps as in the proofs of Theorems 1

and 3. So we will only point out the similarities and differences and omit the full derivations for

brevity.
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Similar to equation (A.9), in the case with microstructure noise,

σ̂
′2
i+ − σ2

i+ =
1

knM∆n

∑
j∈J+

n (i)

3

2M

∑
tnl ∈(τnj−1,τ

n
j ]

(
2

∫ tnl +M∆n

tnl

(X ′s −X ′tnj−1
)dX ′s

+

∫ tnl +M∆n

tnl

(σ2
s − σ2

i+)ds
)

+
1

knM∆n

∑
j∈J+

n (i)

3

M

∑
tnl ∈(τnj−1,τ

n
j ]

tnk∈(τnj−1,τ
n
j ]

(
2

∫ tnl +M∆n

tnk

(X ′s −X ′tnj−1
)dX ′s

+

∫ tnl +M∆n

tnk

(σ2
s − σ2

i+)ds
)
.

(B.3)

Compared to equation (A.9), equation (B.3) features an extra term. This is because when we

replace ∆Xi by ∆X̄i to estimate the volatility, we introduce cross product terms. Previously, when

we used ∆Xi to estimate the volatility, the Brownian motion part of ∆Xi and that of ∆Xi+1 had

no overlap, since they were taken over disjoint time increments. By contrast, ∆X̄i and ∆X̄i+1 are

shifted by a small time increment ∆t while the difference is taken over a bigger time increment

∆τ . So the Brownian motion part of ∆X̄i and that of ∆X̄i+1 will have overlap, and thus introduce

the cross product term. The terms in the first two lines on the right-hand side of equation (B.3),

converge to 0 in probability and do not even contribute to the asymptotic variance. Only the terms

in the second two lines will contribute to the asymptotic variance. The remainder of the proof of

Theorem 6 follows similarly from equation (B.3).

As for Theorem 7, we can still apply the same decomposition as in equation (B.1), except that

we replace ∆n
iXαn by ∆n

i X̄αn and ∆n
iX
′ by ∆n

i X̄
′. Let ∆′n = M∆n. Consider

[X̂, σ2]Ct − [X, σ2]Ct = T (αn)nt + V n
t +D(1)nt +D(2)nt +D(3)nt +D(4)nt +D(5)nt ,
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where

T (αn)nt =

bt/(M∆n)c−kn∑
i=kn+1

(
∆n
i X̄αn(σ̂2

i+ − σ̂2
i−)−∆n

i X̄
′(σ̂
′2
i+ − σ̂

′2
i−)
)
,

V n
t =

bt/(M∆n)c−kn∑
i=kn+1

(
∆n
i X̄
′(σ̂
′2
i+ − σ̂

′2
i−)−∆n

i X̄
′∆n

i σ
2
)
,

D(1)nt =

bt/(M∆n)c−kn∑
i=kn+1

∆n
i X̄
′(∆n

i σ
2,d + ∆n

i σ
2,j
)
,

D(2)nt = −
kn∑
i=1

∆n
i X̄
′∆n

i σ
2 −

bt/(M∆n)c∑
i=[t/(M∆n)]−kn+1

∆n
i X̄
′∆n

i σ
2,

D(3)nt =

bt/(M∆n)c∑
i=1

∆n
iX
′∆n

i σ
2,c −

∫ t

0

2σ2
s−σ̃sds.

D(4)nt =
n−knM∑
i=knM+1

∆n
i X̄αn

1

knM∆n

( ∑
j∈J+

n (i)

2(∆n
j X̄αn)(∆n

j ε̄αn)−
∑

j∈J−n (i)

2(∆n
j X̄αn)(∆n

j ε̄αn)
)

D(5)nt =
n−knM∑
i=knM+1

∆n
i X̄αn

1

knM∆n

( ∑
j∈J+

n (i)

(∆n
j ε̄αn)2 −

∑
j∈J−n (i)

(∆n
j ε̄αn)2

)
.

Then we can deploy essentially the same ideas as in the proof of Theorem 3, upon replacing ∆n by

∆′n and un by u′n = n
b∧(1−b)

2 in each step. The five terms in the decomposition will still converge to

0.

For the asymptotic variance, if we consider ∆′n as the unit of time change, then we can keep

the same notation as in the proof for the case without microstructure noise. There is only one

difference that we need to point out: ∆n
j X̄
′ and ∆n

j+1X̄
′ are not conditionally independent while

∆n
jX
′ and ∆n

j+1X
′ are. Therefore, except for the conditional second moments, there will be an
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extra cross product term contributing to the asymptotic variance. In particular,

ln(m̃,t)∑
i=1

(m̃+1)kn∑
r=kn+1

E
(
(ξI(m̃,n,i)+r)

2|FI(m̃,n,i)
) P−→ 2

3

∫ t

0

η̃2
sds, (B.4)

ln(m̃,t)∑
i=1

(m̃+1)kn−1∑
r=kn+1

2E
(
ξI(m̃,n,i)+r ξI(m̃,n,i)+r+1|FI(m̃,n,i)

) P−→ 1

3

∫ t

0

η̃2
sds. (B.5)

By similar arguments as in the proof of Theorem 3, one can then prove the following equations

to establish the CLT: 

ln(m̃,t)∑
i=1

E
((
ξ(m̃)ni

)2
∣∣∣FI(m̃,n,i)) P−→

∫ t

0

η̃2
sds,

ln(m̃,t)∑
i=1

E
((
ξ(m̃)ni

)4
∣∣∣FI(m̃,n,i)) P−→ 0,

ln(m̃,t)∑
i=1

E
(
ξ(m̃)ni ∆n

i,m̃M
∣∣∣FI(m̃,n,i)) P−→ 0.

The first equation is proven by the summation of (B.4) and (B.5). The remaining two equations

can be proven through tedious calculations, analogous to the ones in the proof of Theorem 3. As

a result, we complete the proof of Theorem 7.
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