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Abstract

This paper examines the leverage effect, or the generally negative covariation between

asset returns and their changes in volatility, under a general setup that allows the log-price

and volatility processes to be Itô semimartingales. We decompose the leverage effect into

continuous and discontinuous parts and develop statistical methods to estimate them. We

establish the asymptotic properties of these estimators. We also extend our methods and

results (for the continuous leverage) to the situation where there is market microstructure

noise in the observed returns. We show in Monte Carlo simulations that our estimators have

good finite sample performance. When applying our methods to real data, our empirical

results provide convincing evidence of the presence of the two leverage effects, especially the

discontinuous one.
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1 Introduction

The “leverage effect” in financial markets refers to the phenomenon that stock returns and their

volatility changes generally exhibit an inverse relation: when stock prices rise, volatilities tend

to drop, and vice versa (see Black (1976)). Using absolute returns sampled at the five-minutes

frequency as a simple volatility proxy, Bollerslev et al. (2006) found prolonged negative correlation

between volatility and current and lagged stock returns.

In this paper, we develop estimators to quantify the leverage effect in a general continuous-time

framework, allowing for general Itô semimartingale dynamics of the log-price and volatility pro-

cesses, with a drift term, a continuous Brownian component and a discontinuous jump component.

This represents an essential step towards fully discriminating the relation between stock returns

and changes in volatility using high-frequency data: in our general framework, the leverage effect

can take more sophisticated forms and exhibit richer dynamic properties than in more restricted

models, such as continuous diffusion models with stochastic volatility.

The first question we address in this paper is how to statistically define the leverage effect

in a continuous-time semimartingale model. We categorize the leverage effect according to the

correlated stochastic components and define: (1) the continuous leverage effect (CLE) as the

quadratic covariation between the continuous parts of the log-price and volatility processes; (2) the

discontinuous leverage effect (DLE) as the quadratic covariation between their discontinuous parts;

and (3) the total leverage effect (TLE) as the sum of the two. Next, we propose estimators for

the CLE and DLE and establish their asymptotic properties by deriving the associated consistency

results and central limit theorems. Due to the latency of the volatility estimators, the mathematical

details required to obtain these results are involved and new to the literature.

Technically, our proposed estimators involve the asymptotic properties of (globally) odd func-

tionals1 of Itô semimartingales’ increments, required to deal with the inherent latency of volatility

1To be specific, we use functions such as f(x1, x2) = x1x
2
2 and their truncated versions. Observe that this
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and complementary to existing results in the literature. While at first sight, the study of odd func-

tionals may not seem useful—for example, the expectation of odd powers of Brownian increments

is zero, implying that odd functionals applied to it may not converge to a non-trivial limit—we

show that after appropriate arrangement, the sum of certain odd functionals of the observed re-

turn process does converge to something very meaningful, namely, the continuous (discontinuous

or total) leverage effect. Moreover, it is worth pointing out that, in our estimators, the number of

successive increments in each summand of the functionals goes to infinity, as the time step goes to

0. In view of this feature, this paper fits into the literature of “pre-averaging” method (e.g., Jacod

et al. (2009), Jacod et al. (2010) and Chapters 12 and 16 in Jacod and Protter (2011)), and those

papers using spot volatility estimates as intermediate variables (e.g. Jacod and Todorov (2010),

Jacod and Rosenbaum (2013), Li et al. (2016), Vetter (2015) and Wang and Mykland (2014),

among others).

In most of the previous literature2, as a direct extension to the discrete-time leverage effect,

the CLE takes the form of a constant, namely the leverage parameter. In recent years, the number

of papers considering time-varying leverage effects is growing. To name a few, Bandi and Renò

(2012) allow the leverage effect to be a function of the (stochastic) state of the firm (thus is time-

varying), which is then summarized by the spot variance or spot volatility. In this paper, we impose

no such structural assumption and allow the CLE to be a very general stochastic process, which

may feature additional source(s) of randomness other than those given by log-prices and volatilities.

Another example is Wang and Mykland (2014), who define the leverage effect in agreement with the

function is odd with respect to x1, but even in the second argument x2. However, if we treat x = (x1, x2) as a

whole, we have f(−x) = −f(x). The use of odd functions here is due to the fact that the volatility process is latent,

hence needs to be estimated from returns. Otherwise, if both the return and volatility series were observable, then

our problem would not be essentially different from estimating quadratic covariation between two (or more) asset

prices.
2For example, extensive literatures in finance and econometrics are based on the model proposed by Heston

(1993), including Aı̈t-Sahalia et al. (2013), Vetter (2012) and Yu (2005).
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CLE and provide non-parametric estimators, with a particular interest in eliminating the impact

from market microstructure noise. However, they assume both return and volatility processes

to be continuous, whereas we allow both of them to have discontinuous parts, thus introducing a

second potential source for the leverage effect, the DLE, which turns out to be particularly relevant

empirically. Furthermore, Kalnina and Xiu (2016) define the leverage effect similarly, yet essentially

differently (see Remark 1), through a quadratic covariation, and replace the volatility process by

its functional (see (2.6)). They compare one estimator using only price data with another one that

also includes VIX data, based on the assumption that VIX can be viewed as a functional of the

volatility process. With this assumption, both of the processes of interest are directly observable,

hence the estimation becomes relatively easy. While this is an appealing idea, we do not think

VIX is a perfect approximation of a functional of the volatility process. It is contaminated by

various noises, including artificial errors (see Andersen et al. (2015)). Instead of using VIX, we

estimate the spot volatility process using price data.3 In view of the differences in definitions,

the econometric and asymptotic properties of our CLE estimator are very different from those of

the two CLE estimators in Kalnina and Xiu (2016). Finally, among others, Veraart and Veraart

(2012) extend the Heston model to allow for a time-varying feature, and Curato (2015) and Curato

and Sanfelici (2015) employ a Fourier transform based method to estimate a stochastic continuous

leverage effect.

The DLE stems from the potentially important co-jumping of log-prices and volatilities. Para-

metric models which allow for co-jumps have been proposed (see, e.g., Eraker et al. (2003)), al-

though without focus on or an attempt at measuring the DLE. Also, their jump process is assumed

3This problem has also been studied by, for example, Fan and Wang (2008) and Alvarez et al. (2012). Moreover,

Jacod and Todorov (2010) and Li and Xiu (2016) included the estimation of spot volatility as an intermediate step

to their main goals. Just like the last two cited papers, the main target of this paper is not the estimation of the

spot volatility process either, and nontrivial results follow right after we obtain the estimator of the spot volatility

process.
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to have finite activity and by nature its parametric form is restrictive. Bandi and Renò (2012)

do mention the possibility of “co-jump leverage”, which is the conditional expectation of our DLE

in a simpler model than the one considered here. However they do not attempt to provide an

estimator of the co-jump leverage, which is among the main contributions of the present paper.

The most closely related work in this respect is Jacod and Todorov (2010), but differences exist.

These authors propose general procedures to test whether price and volatility jump together. Their

initial definition of the general testing functional of the price and volatility processes includes DLE

as a special case. However, certain technical conditions in the central limit theorems in the cited

paper exclude the functional form we used to define DLE (see the discussion after Theorem 4).

We have bridged this gap. The resulting testing procedure is different from those in Jacod and

Todorov (2010).

Some of the statistical challenges arising in leverage effect estimation with high-frequency data

are demonstrated in a specific example in Aı̈t-Sahalia et al. (2013), who analyze the ability to

measure the (constant) CLE in high-frequency data using methods that replace the unobservable

volatility by a simple proxy. Under the well-known Heston model, they show that, at high-frequency

and over short horizons, the estimated leverage parameter is close to zero instead of an expected

strongly negative value. At longer horizons, the leverage effect is present, especially when using

option-implied volatilities. They document that the source of the puzzle—why one may be unable

to detect the leverage effect at high-frequency—can be traced back to the use of a simple realized

volatility plug-in: it shows that one needs to be careful about the proxy employed in place of the

unobservable volatility path. By contrast, our estimators for both the CLE and DLE are asymp-

totically unbiased, since our definitions are based on quadratic covariation only, the estimators do

not involve squared estimated volatility changes.

In Monte Carlo simulations, we analyze the finite sample performance of our estimators and find

that our limit theorems already provide good approximations at the pre-limiting level, confirming
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the practical applicability of our estimators. As a by-product of potential interest in its own right,

we also study the performance of leverage parameter estimators constructed not from variance and

covariance (the usual definition) but from quadratic variation and covariation. We find that the

bias in the latter4 is much smaller than the bias in the former. This suggests that it is preferable

to use quadratic variation and covariation in this setting.

We also extend our methods and theoretical as well as simulation results (for the CLE only,

since it is far more challenging in the case of DLE; see the discussion at the end of Section 6) to the

situation in which there is market microstructure noise in the observed returns. Upon applying our

methods to real high-frequency equity index data, our empirical results provide convincing evidence

of the presence of the two leverage effects, CLE and DLE, with the DLE being more pronounced

than the CLE. To be more specific, we further decompose the DLE into two parts: one associated

with positive price jumps, the other associated with negative price jumps. Their averaged absolute

values both appear to be larger than that of the CLE. We also find that volatility jumps are more

likely to coincide with negative price jumps than positive ones.

The remainder of the paper is organized as follows. In Section 2, we introduce the model setup,

the assumptions and the definitions of the two leverage effects. In Section 3, we introduce the

adopted blocking scheme and the estimators we propose. In Section 4, we present the Law of Large

Numbers (LLN) results for our estimators and in Section 5 we provide the corresponding Central

Limit Theorems (CLTs). In Section 6, we analyze the impact of market microstructure noise. We

demonstrate the finite sample performance of our estimators by Monte Carlo simulations in Section

7, where we also compare two different estimators of the leverage parameter. Section 8 applies our

estimators to real financial data. All proofs are deferred to the Appendix.

4Different from CLE and DLE estimation, without correction, a bias is still present in the case of leverage pa-

rameter estimation, because the quadratic variation of estimated spot volatility involves squared estimated volatility

changes.
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2 Model Setup and Definitions

2.1 Setting and Assumptions

We start with a filtered probability space (Ω,F , (Ft)t≥0,P) on which various processes are defined,

including a log-price and volatility process, (Xt)t≥0 and (σt)t≥0, satisfying:

Assumption (H): The log-price and volatility processes are both Itô semimartingales:

Xt = X0 +

∫ t

0

asds+

∫ t

0

σs−dWs + (δ 1{|δ|≤κ}) ? (µ− ν)t + (δ 1{|δ|>κ}) ? µt, (2.1)

σt = σ0 +

∫ t

0

ãsds+

∫ t

0

σ̃sdWs +

∫ t

0

b̃sdBs + (δ̃ 1{|δ̃|≤κ}) ? (µ̃− ν̃)t + (δ̃ 1{|δ̃|>κ}) ? µ̃t. (2.2)

where W and B are independent standard Brownian motions; µ is a Poisson random measure

independent of the Brownian measure of W on (0,∞) × E with intensity measure ν(dt, dx) =

dt⊗λ(dx), λ is a σ-finite measure without atoms on an auxiliary measurable set (E, E); δ(ω, t, x) is

a predictable function on Ω×R+×E; µ̃, ν̃ and δ̃ satisfy the same assumption as their counterparts,

respectively; κ is a positive constant; finally, the symbol ? denotes the (possibly stochastic) integral

w.r.t. a random measure.5 Additionally,

(a) The processes at(ω), ãt(ω), σ̃t(ω), b̃t(ω), supx∈E
|δ(ω,t,x)|
γ(x)

and supx∈E
|δ̃(ω,t,x)|
γ̃(x)

are locally bounded,

where γ(x) and γ̃(x) are nonnegative functions satisfying
∫
E

(γ(x)2 ∧ 1)λ(dx) < ∞ and∫
E

(γ̃(x)2 ∧ 1)λ̃(dx) <∞, respectively;

(b) All paths t 7→ at(ω), t 7→ ãt(ω), t 7→ σ̃t(ω), t 7→ b̃t(ω) are càglàd (left-continuous with right

limits), and σ̃+ (right limit of σ̃) is also an Itô semimartingale with a Grigelionis decomposition

similar to (2.2);

5More specifically, we have (δ 1{|δ|≤κ})? (µ−ν)t =
∫ t

0

∫
R(δ(ω, s, x) 1{|δ(ω,s,x)|≤κ})(µ−ν)(ds, dx) and (δ 1{|δ|>κ})?

µt =
∫ t

0

∫
R(δ(ω, s, x) 1{|δ(ω,s,x)|>κ})µ(ds, dx).
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(c) The processes σ2 and σ2
− (left limit of σ2) are bounded away from zero.

We may rewrite the volatility jump measure µ̃ as a linear combination of another two Poisson

random measures µ1 and µ2, where µ1 has the same jump times as µ (but the size part can be

different), and µ2 is independent of µ. In other words, µ1 represents the co-jump part and µ2

represents the disjoint jump part.

2.2 Definitions of the Components of the Leverage Effect

A natural measure of the co-movement of two stochastic processes is their quadratic covariation.

Let ∆Xt = Xt −Xt− denote the jump size of X at time t and let ∆σ2
t be defined similarly for the

process σ2. The quadratic covariation of X and σ2 can be decomposed into two parts, as follows:

[X, σ2]T := [X, σ2]CT + [X, σ2]DT , (2.3)

[X, σ2]CT := 2

∫ T

0

σ2
t−σ̃tdt, (2.4)

[X, σ2]DT :=
∑
t≤T

∆Xt ∆σ2
t . (2.5)

We will call [X, σ2]CT the continuous leverage effect, [X, σ2]DT the discontinuous leverage effect, and

[X, σ2]T the total leverage effect. We adopt the acronyms CLE, DLE and TLE.

Remark 1. We note that many related papers (e.g. Kalnina and Xiu (2016), Curato (2015),

Curato and Sanfelici (2015), Veraart and Veraart (2012)) define CLE as the quadratic covariation

between the Brownian motion parts of X and σ, i.e. ρtdt = d[WX ,W σ]t. The leverage effect

defined in this way has the nice mathematical property that ρt ∈ [−1, 1] for any t. Yet we argue

that the CLE defined in our way measures the co-movements between X and σ2, instead of WX and

W σ, hence is a more relevant quantity to finance and is closer to the original meaning of leverage.

Moreover, the estimation of ρt involves estimating the volatility of volatility, i.e. [σ2, σ2]CT . This
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is a very challenging task even in the simple case where neither X nor σ2 jumps. If the process

σ2 jumps, it is still an open question whether there is a consistent estimator of [σ2, σ2]CT (it is not

known whether all volatility jumps can be truncated out asymptotically).

In some applications, one may be interested in some functional of σ2, say F (σ2), instead of σ2

itself. Then we define the continuous leverage effect as

[X,F (σ2)]CT = 2

∫ T

0

∇F (σ2
t−)σ2

t−σ̃tdt. (2.6)

An example is the geometric Ornstein-Uhlenbeck model, with F (x2) = log x2, µ̃ ≡ 0 and

d log σ2
t = −κ log σ2

t dt+ ρ dWt +
√

1− ρ2 dBt,

with parameters κ, ρ with |ρ| ≤ 1. But for notational simplicity, we mainly focus on the σ2 case.

The results in subsequent sections can be extended to the F (σ2) case if the function F ∈ C2.

Kalnina and Xiu (2016) define their continuous leverage effect in this way.

Additionally, we also consider a truncated version of the discontinuous leverage effect, where

only co-jumps induced by large price jumps are selected:

[X, σ2]DT (ε) :=
∑
t≤T

∆Xt ∆σ2
t 1|∆Xt|>ε, for a given ε > 0. (2.7)

We call this the tail discontinuous leverage effect. The randomness of jumps stems from two

sources: jump time and jump size. The jump time can be characterized by the jump intensity,

which may or may not depend on the state of the underlying stochastic process(es), and the jump

size is represented by the jump size distribution.6 In our definition, we preserve both sources of

6In the definition of the co-jump leverage in Bandi and Renò (2012), the jump intensity is further related to

the level of the volatility (or variance), and the random jump sizes (in return and volatility series) are replaced by

their correlation. As a result, the first source of randomness is restricted, although such an assumption embeds an

interesting driving force in the dynamics of the jump intensity process, while the second source of randomness is

eliminated.
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randomness without integrating any of them out, as a result of using the quadratic covariation.

Consequently, our setting allows much flexibility. For example, there can be alternative source(s)

of randomness for the jump intensity beyond, e.g., contemporaneous volatility. And the jump size

distribution may depend on time hence may have time-varying mean, variance, etc. Similar to the

case of integrated volatility, the estimation here will not be a statistical problem in the usual sense,

since the objects to be estimated are random variables, instead of parameters. Similar examples

in statistics include estimating residuals in regression, random effects in mixed effects models, and

false discovery proportion (Fan et al., 2012).

3 Construction of the Estimators

Suppose the data are observed every ∆n = T/n units of time without any measurement error. The

full grid containing all of the observation points is given by:

U = {0 = tn0 < tn1 < tn2 < · · · < tnn = bT/∆nc∆n}, (3.1)

where tnj = j∆n for each j. Then the increment (log-return) of log-prices over the j-th interval is

∆n
jX := Xtnj

−Xtnj−1
.

3.1 The Continuous Leverage Effect (CLE)

We take αn = α∆$
n , for some α > 0 and $ ∈

(
0, 1

2

)
for detecting presence of jumps, and a local

window of kn time intervals for estimating the spot volatility, which is an integer that satisfies the

condition
1

K
≤ kn∆b

n ≤ K, with 0 < b < 1, (3.2)

for some positive constant K. Let I−n (i) = {i−kn, . . . , i−1} (if i > kn) and I+
n (i) = {i+1, . . . , i+kn}

define two local windows in time of length kn∆n, just before and after time i∆n. Denote the
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downward truncated increment of X by ∆n
iXαn = ∆n

iX · 1{|∆n
i X|≤αn}. Then we can define

[X̂, σ2]CT =

bT/∆nc−kn∑
i=kn+1

βni (X), with βni (X) = ∆n
iXαn(σ̂2

i+ − σ̂2
i−)

σ̂2
i+ =

1

kn∆n

∑
j∈I+n (i)

(∆n
jXαn)2, σ̂2

i− =
1

kn∆n

∑
j∈I−n (i)

(∆n
jXαn)2.

(3.3)

The estimator proposed in Wang and Mykland (2014) is given by

〈X̂, σ2〉T = 2
Kn−2∑
i=0

(
Xτn,i+1

−Xτn,i

)(
σ̂2
τn,i+1

− σ̂2
τn,i

)
, σ̂2

τn,i+1
=

1

Mn∆n

∑
tn,i∈(τn,i,τn,i+1]

(
Xtn,j+1

−Xtn,j

)2
,

where Mn is equivalent to kn here and Kn = bn/Mnc. Note that the interval (τn,i, τn,i+1] contains

Mn number of observation intervals like (tn,i, tn,i+1]. And the estimator in the cited paper is

constructed by summing up (the product of) the increments of X and σ̂2 over such large blocks,

the size of which, Mn, goes to infinity. Hence, each summand only overlaps with its two adjacent

ones. This simplifies the asymptotic analysis, but may not be efficient since such data aggregation

leads to a coarse approximation of the integral (2.4). By contrast in (3.3), the summation is taken

over each observation interval (tn,i, tn,i+1]. This provides a finer partition of the data in the time

dimension, but complicates the asymptotic analysis in the current paper because each summand

overlaps with about 2kn number of other ones within a local window.

It is interesting to compare the estimator (3.3) to those of the integrated volatility. In the latter

case, estimators like bipower variation and multipower variation are the sum of even functions of

the increments of the log-price process X. Here in our case with kn = 1, observe that

βni (X)∆n =
∑

j∈I+n (i)

∆n
iXαn(∆n

jXαn)2 −
∑

j∈I−n (i)

∆n
iXαn(∆n

jXαn)2.

Clearly, the representative element of βni (X) takes the function form f(x1, x2) = x1x
2
2, which is

odd instead of even. Additionally, βni (X) is an odd function of an increasing number of increments

(kn →∞), the asymptotic properties of which have not been studied in the literature.
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3.2 The Discontinuous Leverage Effect (DLE)

When estimating the DLE, we need to preserve jumps, instead of eliminating them as in the

case of estimating CLE. Accordingly, we introduce the upward truncated increment ∆n
iX

αn =

∆n
iX · 1{|∆n

i X|>αn}. Similarly, the estimator7 of DLE is given by

[X̂, σ2]DT =

bT/∆nc−kn∑
i=kn+1

∆n
iX

αn(σ̂2
i+ − σ̂2

i−). (3.6)

We also consider the tail discontinuous leverage effect and accordingly use

[X̂, σ2]DT (ε) =

bT/∆nc−kn∑
i=kn+1

∆n
iX

αn∨ε(σ̂2
i+ − σ̂2

i−) (3.7)

to estimate [X, σ2]DT (ε) in (2.7).

7 In Jacod and Todorov (2010), the authors studied a very general limit functional U(F )T (with minor changes

in notations in what follows) given by

U(F )T =
∑
s≤T

F (∆Xs, σ
2
s−, σ

2
s)1{∆Xs 6=0}, (3.4)

together with its estimator

U(F, kn)T =

bT/∆nc−kn∑
i=kn+1

F
(
∆n
i X, σ̂

2
i−, σ̂

2
i+

)
1{|∆n

i X|>αn}. (3.5)

Here F is a function on R × R∗+ × R∗+ where R∗+ = (0,∞). Observe that with the specification F (x, y, z) =

x(z− y), (3.4) and (3.5) would be equivalent to (2.5) and (3.6) (the discontinuous leverage effect and its estimator),

respectively. As we will see, however, the specific functional form of F will allow us to derive central limit results

that apply under much broader conditions regarding jump stochasticity than those applying to a generic F .
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4 Convergence in Probability

4.1 Consistency of the CLE Estimator

Theorem 1. Assume that either one of the following assumptions holds:

(a) X is continuous and the jump part of σ2 has finite total variation;

(b) X is discontinuous with
∫

(γ(x)r ∧ 1)λ(dx) < ∞, for some r ∈ [0, 1), and αn = α∆$
n , for

some α > 0 and $ ∈
[

1
2(2−r) ,

1
2

)
, and the disjoint jump part of σ2 has finite total variation.

Then, under Assumption (H) in Section 2.1 and (3.2), we have8

[X̂, σ2]CT
u.c.p.−−−→ [X, σ2]CT = 2

∫ T

0

σ2
t−σ̃tdt. (4.1)

Remark 2. To compare CLE estimation to the estimation of integrated volatility, observe that

in Theorem 6.3 of Jacod (2012), the assumption on the jump activity index, namely r ∈ [0, 2),

is somewhat less restrictive than in Theorem 1, part (b). The reason is that price jumps affect

the measurement of continuous leverage not only through volatility estimation, but also through the

cross product with spot volatility, which will generate a bias term even without co-jumping.9 Thus,

price jumps cause more challenges for continuous leverage estimation than they do for integrated

volatility estimation. Therefore, we can only allow for somewhat less active price jumps. Otherwise,

their effect cannot be effectively eliminated.

8Here, ZnT
u.c.p.−−−→ ZT means that the sequence of stochastic processes ZnT converges in probability, locally uniformly

in time, to a limit ZT , that is, sups≤T | Zns − Zs |
P−→ 0 for all finite T .

9Refer to the decomposition of X in equation (A.1) and note that the conditional expectation of (∆n
jX
′′)σ2

tnj
∆n

is of the order ∆2
n, the same as (∆n

jX
′)σ2

tnj
∆n.
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4.2 Consistency of the DLE Estimator

Recall the jump activity index r introduced in Theorem 1, part (b).

Theorem 2. Suppose that Assumption (H) holds and that condition (3.2) is satisfied. In addition,

assume that µ̃ can be decomposed into two parts: one part that always jumps at the same time with

µ and satisfies (H) with the same r; and another part that never jumps at the same time with µ

and has finite variation.

(i) If r ∈ [0, 1], then [X̂, σ2]DT converges in probability, in the Skorokhod topology, to [X, σ2]DT .

(ii) Given some ε > 0, if r ∈ [0, 2), then [X̂, σ2]DT (ε) converges in probability, in the Skorokhod

topology, to [X, σ2]DT (ε).

The results of Theorem 2 are direct consequences from Theorem 3.1 in Jacod and Todorov

(2010). In case (i), we require r ∈ [0, 1] to satisfy condition (c) of their theorem with our particular

choice of F . Furthermore, case (ii) satisfies condition (a) of their theorem.

It is interesting to note the tradeoff between jump activity and jump size in the assumptions: if

all co-jumps are considered, then we must put a stronger restriction on the jump activity, as in part

(i) of Theorem 2; but if we only consider co-jumps for which price jumps are large (larger than ε),

then the restriction on the jump activity can be relaxed, as in part (ii) of Theorem 2. Intuitively

speaking, we need to put certain restrictions on summability of the process to be estimated. Since

the probability of having large price jumps is relatively low, by considering only co-jumps induced

by large price jumps, we implicitly set such restriction.

4.3 Consistency of the TLE Estimator

Obviously, if Xn
P−→ X and Yn

P−→ Y , then Xn + Yn
P−→ X + Y . Therefore, [X̂, σ2]CT + [X̂, σ2]DT is

a consistent estimator of [X, σ2]T .
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5 The Central Limit Theorems

5.1 CLT for the CLE Estimator

Theorem 3. For some finite and positive constant c, let kn = bcnbc with 0 < b < 1. Assume that

either one of the following assumptions holds:

(a) X is continuous and the jump part of σ2 has finite total variation;

(b) X is discontinuous with
∫

(γ(x)r ∧ 1)λ(dx) < ∞, for some r ∈ [0, 1/2), and αn = α∆$
n , for

some α > 0 and $ ∈
[

3
4(2−r) ,

1
2

)
, and the disjoint jump part of σ2 has finite total variation.

Then, under Assumption (H),
√
n
b∧(1−b)(

[X̂, σ2]CT−[X, σ2]CT
)

converges stably in law to a limiting

random variable defined on an extension of the original probability space. That is,

√
n
b∧(1−b)

(
[X̂, σ2]CT − [X, σ2]CT

)
Lst−−→

∫ T

0

ηt dBt, (5.1)

where B is a standard Wiener process independent of F , and ηs satisfies:

∫ T

0

η2
t dt =



4

c

∫ T

0

σ6
t− dt, if b < 1/2;

4

c

∫ T

0

σ6
t− dt+

2cT

3

∫ T

0

σ2
t− d〈σ2, σ2〉t, if b = 1/2;

2cT

3

∫ T

0

σ2
t− d〈σ2, σ2〉t, if 1/2 < b < 1.

(5.2)

Note that the convergence rate is given by
√
n
b∧(1−b)

. Hence, when b = 1/2, one gets the optimal

convergence rate n1/4. The feasible version is

√
n
b∧1−b√

V̂ n
T (X,αn)

(
[X̂, σ2]CT − [X, σ2]CT

)
Lst−−→ N (0, 1), (5.3)
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where the standard normal random variable N (0, 1) is independent of F , and

V̂ n
T (X,αn) =

4

15c∆2
n

bT/∆nc−kn∑
i=kn+1

(∆n
iXαn)6 · 1{0<b≤1/2} +

cT

kn

bT/∆nc−kn∑
i=kn+1

(
∆n
iXαn

)2

×
((
σ̂2
i+ − σ̂2

i−
)2 − 2

3(kn∆n)2

∑
j∈I±n (i)

(∆n
jXαn)4

)
· 1{1/2≤b<1}.

(5.4)

Not surprisingly, the convergence rate is determined by the spot volatility estimates. There are

two sources of errors in the estimation of spot volatility, as shown in the proof of Lemma 1 in the

Appendix. We call the first one the price variation error, i.e. ξn±(1) in the Appendix, since it only

involves the log-price process and its limiting standard deviation is proportional to σ2
i±, the spot

value of the quadratic variation of X. And the second one could be termed the volatility variation

error, i.e. ξn±(2), which is defined as the partial sum of integrals of volatility increments and has a

limiting standard deviation related to the spot value of the quadratic variation of the σ2 process.

Their convergence rates are given by 1/
√
kn and

√
kn∆n (this order hinges on the smoothness of

the volatility process implied by equation (2.2)), respectively. When b < 1/2, in other words when

the length of the local window kn∆n is relatively small, one can pretend volatility were constant,

hence the price variation error would dominate. By contrast, when b > 1/2, such simplification

does not hold anymore as the volatility variation error becomes dominant. Lastly, these two errors

are of the same order when b = 1/2. In this case, one could estimate their corresponding limiting

variances separately (see the two terms in (5.4)) and then choose an optimal value of c to minimize

the total limiting variance (see a similar discussion in Wang and Mykland (2014)).

Here, when there are no price jumps but only volatility jumps (with finite total variation), the

convergence rate of the CLE estimator does not change at all.10 The reason is that our definition

of CLE is solely based on time domain properties of the underlying stochastic processes and is not

a function of spot volatility. Therefore, volatility jumps do not change the convergence rate of the

10But in Bandi and Renò (2012), volatility jumps will slow down the convergence rate.
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estimators.

5.2 CLT for the DLE Estimator

Theorem 4. Suppose that Assumption (H) holds and that condition (3.2) is satisfied. In addition,

assume that µ̃ can be decomposed into two parts: one part that always jumps at the same time with

µ and satisfies (H) with the same r; and another part that never jumps at the same time with µ

and has finite variation. Let αn = α∆$
n with $ ∈ (0, 1/2) and un = nb∧(1−b).

(i) If r ∈ [0, 1), then, for any $ ∈ [ 1
2(2−r) ,

1
2
) and any finite T ,

√
un
(
[X̂, σ2]DT −[X, σ2]DT

)
converges

stably in law to the random variable

DT =
∑
p≥1

∆XTp(V
+
p − V −p )1{Tp≤T}, (5.5)

where V +
p and V −p are independent normal variables with F-conditional variance given in

(A.8) and {Tp} is the set of jump times.

(ii) Given some ε > 0, if r ∈ [0, 3/2), then, for any $ ∈ [ 1
4(2−r) ,

1
2
),

√
un
(
[X̂, σ2]DT (ε)− [X, σ2]DT (ε)

)
converges stably in law to the process

DεT =
∑
p≥1

∆XTp1{|∆XTp |>ε}(V
+
p − V −p )1{Tp≤T}.

Since the estimation errors in these cases come from estimating pre- and post- jump volatilities,

the F-conditional variances of DT and DεT can be estimated by adapting (5.4) accordingly. For
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instance,

̂Var(DT |F)(X,αn) =
2

3ckn∆2
n

bT/∆nc−kn∑
i=kn+1

(
∆n
iX

αn
)2
∑

j∈I±n (i)

(∆n
jXαn)4 · 1{0<b≤1/2} +

c

kn

bT/∆nc−kn∑
i=kn+1

(
∆n
iX

αn
)2

×
((
σ̂2
i+ − σ̂2

i−
)2 − 2

3(kn∆n)2

∑
j∈I±n (i)

(∆n
jXαn)4

)
· 1{1/2≤b<1}.

As in the CLE case, the optimal convergence rates in both (i) and (ii) are n1/4, corresponding to

b = 1/2.

In connection to Theorem 3.2 in Jacod and Todorov (2010), observe that when r > 0, F (x, y, z) =

x(z − y) fails to satisfy the conditions in that theorem. In the general case where ε = 0, i.e. part

(i), Theorem 4 provides a CLT not just for the case of finite jump activity, but also for the infinite

jump activity case with jump index r < 1.

Note also that we encounter a similar tradeoff between jump activity and jump size as in

Theorem 2.

5.3 CLT for the TLE Estimator

For the purpose of estimating the TLE, we no longer need to distinguish between CLE and DLE

and therefore can impose a less stringent restriction on the jump activity index:

Theorem 5. Suppose that Assumption (H) holds and that condition (3.2) is satisfied. Let αn and

un be as before and let

[X̂, σ2]T :=

bT/∆nc−kn∑
i=kn+1

(∆n
iX)(σ̂2

i+ − σ̂2
i−).

If r ∈ [0, 3/2), then, for any finite T , we have

√
un
(
[X̂, σ2]T − [X, σ2]T

) Lst−−→
∫ T

0

ηs dBs +DT .

Again, the optimal convergence rate n1/4 is achieved when b = 1/2.
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6 Market Microstructure Noise

In high-frequency financial applications, the presence of market microstructure noise in asset prices

can be non-negligible. To deal with market microstructure noise, we employ pre-averaging. The

contaminated log return process Yt is observed every ∆tn,i = T/n units of time, at times 0 = tn,0 <

tn,1 < tn,2 < · · · < tn,n = T . The noise term has the following structure:

Assumption 1.

Yt = Xt + εt,where the εt’s are i.i.d. N(0, a2) and εt ⊥⊥ Wt and Bt, for all t ≥ 0. (6.1)

Blocks are defined on a much less dense grid of τn,i’s, also spanning [0, T ], so that

block i = {tn,j : τn,i ≤ tn,j < τn,i+1} (6.2)

(the last block, however, includes T ). We define the block size, Mn,i, by

Mn,i = #{j : τn,i ≤ tn,j < τn,i+1}. (6.3)

In principle, the block size can vary across the trading period [0, T ], but for this development we

take Mn,i = M : it depends on the sample size n, but not on the block index i. We then use as an

estimated value of the efficient price in the time period [τn,i, τn,i+1):

X̂τn,i =
1

M

∑
tn,j∈[τn,i,τn,i+1)

Ytn,j .

Let J−n (i) = {i− knM, . . . , i−M} (if i > knM) and J+
n (i) = {i+M, . . . , i+ knM} define two

local windows in time of length knM∆n just before and after the interval [i∆n, (i+ 1)∆n). Denote

the truncated increment of X̂ over M∆n by ∆n
j X̂αn = ∆n

j X̂ · 1{|∆n
j X̂|≤αn}

. Then we can define

[X̂, σ2]CT =
n−knM∑
i=knM+1

∆n
i X̂αn(σ̂2

i+ − σ̂2
i−)

σ̂2
i+ =

3

2knM∆n

∑
j∈J+

n (i)

∆n
j X̂

2
αn , σ̂2

i− =
3

2knM∆n

∑
j∈J−n (i)

∆n
j X̂

2
αn .

(6.4)
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Theorem 6. Under the same conditions as in Theorem 1 except that M = bc1

√
nc and kn =

b c√
c1
nb/2c for some finite and positive constant c1,

[X̂, σ2]CT
u.c.p.−−−→ [X, σ2]CT =

∫ T

0

2σ2
t−σ̃tdt. (6.5)

Theorem 7. Under the same conditions as in Theorem 3, except that M = bc1

√
nc and kn =

b c√
c1
nb/2c for some finite and positive constant c1, n

b∧(1−b)
4

(
[X̂, σ2]CT − [X, σ2]CT

)
converges stably in

law to a limiting variable defined on an extension of the original probability space. That is,

n
b∧(1−b)

4

(
[X̂, σ2]CT − [X, σ2]CT

)
Lst−−→

∫ T

0

η̃s dBs, (6.6)

where B is a standard Wiener process independent of F , and η̃s satisfies:∫ T

0

η̃2
sds =

(
4
√
c1

c

∫ T

0

σ6
t− dt+

24a2

cc
3/2
1 T

∫ T

0

σ4
t− dt+

54a4

cc
7/2
1 T 2

∫ T

0

σ2
t− dt

)
1{0<b≤1/2}

+

(
2c
√
c1T

3

∫ T

0

σ2
t− d〈σ2, σ2〉t

)
1{1/2≤b<1}.

Similar to the case without market microstructure noise, we shall assess the asymptotic nor-

mality of the standardized statistics

n
b∧(1−b)

4

(
[X̂, σ2]CT − [X, σ2]CT

)
√∫ T

0
η̃2
sds

in the simulation study.

Although the effects of microstructure noise have been well understood in the context of esti-

mating diffusion related quantities (such as integrated and spot volatility), it seems that, for jump

related quantities, all existing methods dealing with microstructure noise become powerless. For

example, Bücher and Vetter (2013) explain why the pre-averaging method fails when estimating

the Lévy measure of log-price jumps (see Section 5.4 of the cited paper). For the same reason, a
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direct application of the pre-averaging method does not yield a consistent estimator of the discon-

tinuous leverage effect. It is still an open question whether a consistent estimator exists or not.

We leave this for further research.

7 Monte Carlo Simulations

Throughout this section, the time unit is measured in years, hence the time span of one trading

day is T = 1/252.

7.1 CLE Without Jumps

We first examine the finite sample performance of the CLE estimator. We use the Heston model

to generate by simulations the log-price process Xt and the volatility process σ2
t : dXt = (µ− σ2

t /2)dt+ σtdWt

dσ2
t = κ(θ − σ2

t )dt+ ησt(ρdWt +
√

1− ρ2dVt),
(7.1)

where W and V are independent standard Brownian motions. We take the following parameter

values: θ = 0.1, η = 0.5, κ = 5, ρ = −0.8 and µ = 0.05.

We simulate data using three total time span specifications: one week (5 trading days), one

month (21 trading days) and one year (252 trading days). Within each trading day, the number of

observations is 4680, corresponding to sampling every 5 seconds for a 6.5 hours trading day (390

minutes), which mimics the empirical data we are going to analyze in Section 8. We repeat each

simulation run 5000 times. We take kn = b
√
T/∆nc.

Figure 1 presents the simulation results. The first row gives the densities of the realized (red

solid line) and estimated (blue dashed line) continuous leverage effects. In the weekly case, where

the total time span T is relatively small, the variance of the estimates is much larger than that of

the true (realized) values. As the time span increases, these two densities become more similar.
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Figure 1: The first three rows are densities of: (1) the realized (red and solid) and estimated (blue

and dashed) continuous leverage effects; (2) ratios of the estimated CLEs and the corresponding

true values; (3) the standardized estimation errors (blue and dashed, the left hand side of (5.3))

and a standard normal random variable (red and solid). The last row provides quantile-quantile

plots of the sample quantiles of the standardized estimation errors versus theoretical quantiles from

a normal distribution. Each column corresponds to a different total time span.
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The second row of graphs measures the estimation precision. We plot the densities of ratios of

the estimated CLEs to the corresponding true (realized) ones. As expected, the precision increases

with time span and sampling frequency. Although in the weekly case the estimation precision is

arguably still somewhat low, the mean estimation errors (of order 10−6) remain small compared to

the sample mean of the true values (of order 10−3). And the mean value of the ratios is around 1.

Both rows confirm that the CLE estimator is indeed unbiased.

The graphs in the last two rows assess the asymptotic normality in finite samples: in the third

row we plot the densities of the standardized estimation errors (blue dashed line), i.e. the LHS

of (5.3), and the standard normal density (red solid line) as benchmark; the last row presents the

corresponding QQ plots. Contrary to the first two rows, the results in the last two rows are not

very different across time span. In all the three cases, both densities and quantiles are quite close

to those of a standard normal random variable. These results suggest that the somewhat poor

finite sample performance in the weekly case is due to large variance and not to bias.

In addition, we plot the rejection rates of the test for the presence of CLE against significant

levels in Figure 2. The plot is similar to the ROC curve. The null hypothesis of CLE = 0 is

tested by using (5.3). Since we assume the presence of CLE in the simulated model, this illustrates

the finite sample power of the test. In the weekly case, the rejection rates of both one-sided and

two-sided tests are just above the corresponding significance levels, indicating low power of the

tests. However, the tests become much more effective in rejecting the false null hypothesis in the

monthly case. Even when the significance level is small, we obtain reasonably large rejection rates.

This is due to the fact that, in the monthly case, we not only have more observations but also

the magnitude of the latent true values becomes larger compared to the estimated standard errors.

Finally, in the yearly case, as the significance level increases, the rejection rate goes to 1 very

rapidly. The results presented here will serve as guidance to choose a suitable time span to test for

the presence of CLE in the empirical study that follows.
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Figure 2: Testing powers (y-axis) against significant levels (x-axis) for different specifications of

total time span. The red solid curve corresponds to the power of the one-sided test, and the blue

dashed curve corresponds to that of the two-sided test.

7.2 CLE With Nuisance Jumps

Next, we consider the following model, which incorporates jumps: dXt = (µ− σ2
t /2)dt+ σtdWt + JXt dNt

dσ2
t = κ(θ − σ2

t )dt+ ησt(ρdWt +
√

1− ρ2dVt) + Jσt dNt,
(7.2)

where Nt is a Poisson process with intensity λ, and where JXt and Jσt are the jump sizes of the

log-price and volatility processes at time t, respectively. The parameters of the diffusion part are

taken to be the same as in Section 7.1. The density of price jumps is taken as an asymmetric

double exponential distribution

fX(x) =


p
γd

exp( x
γd

), −∞ < x ≤ 0;

1−p
γu

exp(− x
γu

), 0 < x <∞;

where γu, γd > 0 and 0 ≤ p ≤ 1, while the density of volatility jumps is specified as the exponential

distribution

fσ(x) =
1

γσ
exp

(
− x

γσ

)
, x ≥ 0.
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We set γu = 0.008, γd = 0.018, p = 0.6 and λ = 300.

We vary the values of γσ to study the effects of volatility jumps on the performance of our

estimator [X̂, σ2]CT and the power of the test for the null hypothesis of CLE = 0. Recall the result

in Theorem 3 that volatility jumps do not change the convergence rate but increase the asymptotic

variance. Based on the results in the previous subsection, we choose T = 21/252 (one trading

month) so that it is easier to see the differences in the power of the test under various choices

of volatility jump sizes. We use again 5-sec sampling yielding 4680 observations per trading day,

replicated 5000 times. We take kn = b
√
T/∆nc, α = 5

√
BVT , where BVT stands for the bipower

variation in the selected time span T , and $ = 0.49.

Figure 3 presents the simulation results. As in Section 7.1, the densities of the standardized

estimation errors (LHS of (5.3)) again follow closely the standard normal density. As can be

expected, large volatility jump sizes have an adverse effect on the power of the test: the larger γσ,

the lower the power of the test.

7.3 CLE with Noise

This subsection aims to verify in finite samples the asymptotic normality of the standardized noise-

robust statistics in Section 6. The number of simulations is 5000. We set T = 1/252 (one trading

day) and n = 106. In addition, we take c = 1, c1 = 1, b = 1/2 and, accordingly, kn = bn1/4c,

and choose again α = 5
√

BVT and $ = 0.49. We first simulate the processes of Section 7.1 with

market microstructure noise (but without jumps). The microstructure noise is simulated from

N(0, 0.0052). The results are shown in Figure 4. Next, we simulate the processes of Section 7.2

with market microstructure noise (and jumps). The results are shown in Figure 5. We observe a

close fit to the standard normal distribution in both cases.
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Figure 3: Standardized estimation error densities and testing powers. First row: the red solid line

corresponds to the standard normal density, the blue dashed line to the standardized estimation

error density. Second row: the red solid line corresponds to the one-sided test, the blue dashed line

to the two-sided test.

7.4 DLE

In this subsection, we work with a stochastic volatility model given by
dXt =

√
V 1
t + V 2

t dWt +
∫
R xµ(dt, dx, dy),

dV 1
t = κ1(θ − V 1

t )dt+ η
√
V 1
t dW

′
t ,

dV 2
t = −κ2V

2
t dt+

∫
R yµ(dt, dx, dy),

where W and W ′ are independent standard Brownian motions, and the Poisson random measure

µ has compensator

ν(dt, dx, dy) =
λ

(h− l)(u− d)
1{x∈[−h,−l]}1{y∈[d,u]},
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Figure 4: Standardized estimation error densities and QQ plots with market microstructure noise

but without jumps, with T = 1/252 (one trading day) and n = 106. The plots show a close fit to

N(0, 1).

for 0 < l < h and 0 < d < u. The parameter settings used in the simulations are given in Table 1.

Table 1: Parameter settings used in simulation

Parameters

Case κ1 θ η κ2 λ l h d u

I-j 5.04 0.4 0.2 126 126 0.1 1.0420 0.04 0.76

II-j 5.04 0.4 0.2 126 252 0.1 0.7197 0.04 0.36

III-j 5.04 0.4 0.2 126 1008 0.1 0.3275 0.04 0.06

We set T = 5/252 (one trading week) and simulate 5000 replications. On each day, we consider

sampling n = 390 and n = 4680 times. For the calculation of the local volatility estimators we use

again a window of kn = b
√
T/∆nc and choose the truncation parameters again as α = 5

√
BVT
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Figure 5: Standardized estimation error densities and QQ plots with both jumps and market

microstructure noise, with T = 1/252 (one trading day) and n = 106. Again, we observe a close fit

to N(0, 1) in both plots.

and $ = 0.49.

The first row in Figure 6 shows the densities of the standardized estimation errors. In all

three cases, they are very close to the standard normal density, demonstrating that the asymptotic

normality holds quite well in finite samples. The second row displays the sample rejection rates

for the false null hypothesis of DLE = 0 (finite sample testing power). As one can see, the power

increases with sampling frequency, and decreases as the number of jumps gets larger but the jump

sizes become smaller.

7.5 The Estimation of the Leverage Parameter

In this subsection, we study the estimation of the leverage parameter, ρ, which is also the correlation

between the two Wiener processes appearing inXt and σ2
t . We will consider again the Heston model,
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Figure 6: Standardized estimation error densities and testing powers. First row: the red solid line

corresponds to the standard normal density, the blue dashed line to the standardized estimation

error density in case n = 390 (1-min), and the black dotted line to the standardized estimation

error density in case n = 4680 (5-sec). Second row: the y-axis represents the sample rejection rate

while the x-axis gives the significant level; the red solid line corresponds to n = 4680, the blue

dashed line corresponds to n = 390.

as in (7.1). Note that in the Heston model

ρ =
〈X, σ2〉T√

〈X,X〉T 〈σ2, σ2〉T
.

We will compare estimation results for ρ using different ways to estimate the volatility of

volatility:
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1. Smoothed simple estimator and its unsmoothed counterpart:

〈σ2, σ2〉ST,naive =
1

kn

bT/∆nc−kn∑
j=kn+1

(
σ̂2
j+ − σ̂2

j−
)2
, 〈σ2, σ2〉UT,naive =

bT/(kn∆n)c−1∑
j=1

(
σ̂2
jkn+ − σ̂2

jkn−
)2
.

2. Smoothed sophisticated estimator and its unsmoothed counterpart:

〈σ2, σ2〉ST,soph =
1

kn

bT/∆nc−kn∑
j=kn+1

(3

2

(
σ̂2
j+ − σ̂2

j−
)2 − 6

kn
σ̂4
j

)
,

〈σ2, σ2〉UT,soph =
1

kn

bT/(kn∆n)c−1∑
j=1

(3

2

(
σ̂2
jkn+ − σ̂2

jkn−
)2 − 6

kn
σ̂4
jkn

)
, σ̂4

j =
1

6kn∆2
n

∑
l∈I±n (j)

(∆n
l X)4.

Although this estimator can correct for the bias present in the simple estimator, the subtrac-

tion sometimes introduces negative estimated values for the positive volatility of volatility.

To avoid this and maintain the bias-correction, one can use instead the ratio statistics below

as an alternative estimator (for further details about the asymptotics, refer to Vetter (2015)).

3. Smoothed ratio estimator:

〈σ2, σ2〉ST,ratio =
1
kn

∑bT/∆nc−kn
j=kn+1

3
2

(
σ̂2
j+ − σ̂2

j−
)2∑`

i=0 r
i

, r =

∑bT/∆nc−kn
j=kn+1

6
kn
σ̂4
j∑bT/∆nc−kn

j=kn+1
3
2

(
σ̂2
j+ − σ̂2

j−
)2 , (7.3)

where ` is a given positive integer. Note that when ` = ∞ and r < 1, it reduces to case 2.

The advantage is that the modified quantity is non-negative.

With these estimators of the volatility of volatility, we study the following 7 estimators of ρ in
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simulations: 

ρ1 =
〈X, σ2〉T√

〈X,X〉T 〈σ2, σ2〉T
, ρ2 =

[X̂, σ2]CT√
〈X,X〉T 〈σ2, σ2〉T

,

ρ3 =
[X̂, σ2]CT√

〈X,X〉T 〈σ2, σ2〉UT,naive

, ρ4 =
[X̂, σ2]CT√

〈X,X〉T 〈σ2, σ2〉UT,soph

,

ρ5 =
[X̂, σ2]CT√

〈X,X〉T 〈σ2, σ2〉ST,naive

, ρ6 =
[X̂, σ2]CT√

〈X,X〉T 〈σ2, σ2〉ST,soph

,

ρ7 =
[X̂, σ2]CT√

〈X,X〉T 〈σ2, σ2〉ST,ratio

.

We will examine how the choice of the tuning parameter c, introduced in Theorem 3, impacts

the MSE of the leverage parameter estimator. In the simulations, the parameterization of the

Heston model is set as: θ = 0.06, η = 1, κ = 10, ρ = −0.8 and µ = 0.05. Furthermore, the total

time span is T = 21/252 (monthly) and ∆n = (1/252)/4680 (5-sec) or ∆n = (1/252)/23400 (1-sec).

Each simulation run is repeated 5000 times. We take b = 1/2.

6 7 8 9 10 11 12
8

9

10

11

12

13

14

15

16

17
The estimation of ρ: RMSE/|ρ| (5−sec sampling)

Bandwidth (in minutes)

P
er

ce
nt

ag
e

 

 

ρ3

ρ5

ρ4

ρ6

Figure 7: Change of root MSE against a

change of the tuning parameter c (5-sec).
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In Figures 7 and 8, we first consider the MSEs of the estimators ρ3 to ρ6. The x-axis indicates

how we vary the number of local observations (controlled by the tuning parameter c that first

appears in Theorem 3) to estimate the spot volatility. If the value on the x-axis is x, the number

of local observations used in calculating the spot volatility is x minutes × 12 (5-sec case) or x

minutes × 60 (1-sec case). It is clearly apparent that the MSEs of ρ4 and ρ6 are more steady

over the different specifications of the tuning parameter c, hence less sensitive to the choice of c

compared to the MSEs of ρ3 and ρ5. Furthermore, the MSEs of ρ4 and ρ6 are smaller than those

of ρ3 and ρ5, with ρ6 having the smallest MSE among the four estimators.

The quality of the estimation of ρ obviously depends on the quality of the estimation of the

volatility of volatility. The method used to estimate the volatility of volatility in ρ3 and ρ5 in-

troduces biases. It is visible in Figures 7 and 8 that, when the sampling frequency increases, the

influence of the bias in ρ3 and ρ5 becomes more severe, as indicated by a much larger MSE in the

second plot. Although the estimators of the volatility of volatility in ρ4 and ρ6 are not biased,

they often produce negative values. This negative estimation for a positive quantity is obviously

detrimental to the estimation of ρ. So we also study the adjusted version of the estimator of the

volatility of volatility as shown in equation (7.3) and hence the correlation estimator ρ7 in Figure

9.

More specifically, in Figure 9, we study the behavior of ρ3, ρ6 and ρ7. Here, ρ3 has the simplest

form among the three. The drawback of ρ3 is that it does not incorporate bias correction. But the

advantage of ρ3 is its simple form and the fact that it always yields positive estimates for the positive

volatility of volatility. Compared to ρ3, ρ6 corrects for the bias in the estimation of the volatility of

volatility and as such is a better estimator of ρ. However, ρ6 sometimes produces negative values

for the estimation of a positive quantity which will be taken into the square root to estimate ρ.

This drawback of ρ6 makes it impossible to estimate ρ occasionally. To fix this negativity problem,

ρ7 seems to be the ideal estimator of ρ: ρ7 corrects for the bias in the estimation of the volatility

of volatility and ρ7 will also make sure every estimated value of a necessarily positive quantity is
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Figure 9: MSE comparison of the estimation of ρ. This figure plots the change of the root MSE

against a change of the tuning parameter c (x-axis) for ρ3, ρ6 and ρ7. All curves exhibit first a

decreasing and next an increasing trend in root MSE.

positive. In addition, the MSE of ρ7 is almost of the same size as that of ρ6. This can be seen in

Figure 9. Both ρ7 and ρ6 achieve the minimum MSE at the same value of the tuning parameter c.

By contrast, ρ3 has a much larger MSE than the other two estimators (except when c = 1). This

larger MSE is due to the uncorrected bias.

We also analyze the degree of accuracy the estimators of ρ reach relative to the true value

(taken to be -0.8). The densities of ρ1, . . . , ρ6 (in the case of their optimal choices of bandwidth

shown above) are presented in Figure 10. In the figure, the adjective “true” refers to the idealized

hypothetical situation in which the volatility process is actually observable. The density of ρ7 is

almost identical to that of ρ6 and is therefore omitted.

The results of this subsection show that a non-naive estimator of the volatility of volatility

should be applied in empirical studies. They also show that the tuning parameter should be

sufficiently large to achieve a good MSE. Of course, the tuning parameter can be optimized by
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minimizing the asymptotic variance. Moreover, this simulation study demonstrates how challenging

it is to estimate the standardized measure ρt. Even in the case where the process ρt is constant and

there are no volatility jumps, it is still rather difficult to recover the constant leverage parameter

ρ in finite samples. Note, however, that this is a shortcoming of the standardized measure, not of

the non-standardized measure, i.e., the definition we use for CLE.

8 Empirical Results

In our empirical application, we use a data set consisting of 5-seconds Dow Jones equity index data

from July 1st, 2003, until February 8th, 2013, covering 2426 trading days (502 weeks). Since the

volatility signature plot does not support the existence of microstructure noise in our sample11,

we only use the non-noise-robust estimators. As in the Monte Carlo simulations, we take the

truncation parameters to be α = 5 ×
√

BVT and $ = 0.49, and we take b = 1/2. The testing

results are in Tables 2 and 3.

The whole sample period is subdivided into disjoint 1-week or 4-week time intervals. In each

given time interval, the one-sided test for the null hypothesis of CLE = 0 is conducted based on

(5.3). The percents of rejections are reported in Table 2. From the table, one can see that, with

11A possible explanation is that the Dow Jones Index is constructed from very liquid stocks. In fact, the realized

variation first stays roughly the same as we increase the sampling frequency from 30-minutes to about 3-minutes,

and then decreases (rather than increases) as we further increase the frequency to 5-seconds. This is consistent

with the finding that 5-seconds returns are positively correlated, which might be explained by self- and/or mutual

excitation in jumps (see e.g. Aı̈t-Sahalia et al. (2015) and Boswijk et al. (2015)). For instance, it could be the

case that occurred jumps tend to excite other jumps with the same sign in the short run. If such scenario happens

frequently, then the sample autocorrelations can be positive. Yet we don’t expect such same-sign-jump-exciting

effect to last long, perhaps only a few minutes.
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Figure 10: Densities of the leverage parameter estimators.

weekly data, the rejection rates are not very high, while with monthly data, the rejection rates

are much higher. This is expected, as a larger sample size yields a higher power, and this finding

is consistent with what we have found in the simulation study (cf. Section 7.1). Had there been
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no continuous leverage effect within each week, then we would not find more supportive evidence

for its presence with monthly data. Therefore, we conclude that there is positive evidence for the

presence of the continuous leverage effect.

Table 2: Testing for the absence of CLE

Rejection rates for a given significance level

1% 5% 10%

1-week
c = 1 22.91% 35.66% 42.23%

c = 2 24.30% 37.25% 44.02%

4-weeks
c = 1 39.68% 60.32% 67.46%

c = 2 36.51% 55.56% 65.08%

As for the DLE, we first employ the procedure introduced in Aı̈t-Sahalia and Jacod (2009)

to test whether the returns jump or not within each week.12 Next, we apply our estimation and

testing procedures for the DLE to those weeks containing return jumps. Table 3 displays the

testing results for the absence of DLE. Here, we further classify the DLE according to the sign

of the return jump. The terms “pos” and “neg” in the third column stand for the discontinuous

leverage effects from positive and negative return jumps, respectively, while “all” means all return

jumps together. More precisely, “all” refers to the estimator (3.6), whereas “pos” computes (3.6)

with the further restriction to ∆n
jX

αn > 0 and “neg” is defined similarly. Furthermore, we also

consider the tail DLE with three thresholds, namely 0.2%, 0.3% and 0.4%. One readily sees that

the evidence for the presence of the various types of DLE is very strong. Another very interesting

finding is that, at any threshold level, negative return jumps are more likely to be accompanied by

volatility jumps than positive ones.

12See also Fan and Fan (2011) for an improved version of the test.
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Table 3: Testing for the absence of DLE

Jump

size

# of

weeks
DLE

Rejection rates for a given significance level

c = 1 c = 2

1% 5% 10% 1% 5% 10%

any size 495

all 62.83% 71.31% 74.95% 70.91% 77.58% 79.80%

pos 82.22% 87.27% 88.48% 81.62% 86.06% 89.29%

neg 87.68% 91.52% 92.93% 88.48% 90.71% 92.32%

> 0.20% 221

all 57.01% 61.99% 67.42% 59.28% 66.52% 73.30%

pos 35.29% 41.18% 43.44% 37.10% 40.72% 45.25%

neg 46.15% 49.77% 53.39% 45.70% 52.04% 56.11%

> 0.30% 112

all 51.79% 58.93% 62.50% 58.93% 65.18% 72.32%

pos 24.11% 28.57% 30.36% 28.57% 30.36% 33.93%

neg 39.29% 39.29% 42.86% 42.86% 44.64% 48.21%

> 0.40% 61

all 47.54% 52.46% 55.74% 54.10% 60.66% 62.30%

pos 18.03% 22.95% 26.23% 26.23% 27.87% 31.15%

neg 34.43% 39.34% 39.34% 36.07% 40.98% 40.98%

Furthermore, to get an idea about the relative magnitudes of the CLE and DLE, we compute

the ratios of |CLE|, |DLEpos| and |DLEneg| to their sum on the basis of 4-week data. We report

the resulting sample means and standard errors of these ratios in Table 4. The results show that

|DLEpos| and |DLEneg| are larger than |CLE| on average, suggesting that the co-jumps between

the price and volatility processes are particularly relevant. Specifically, |DLE|, which is the sum

of |DLEpos| and |DLEneg|, accounts for 73.84% of the leverage effect, whereas |CLE| accounts for

only 26.15%.

38



Table 4: Relative magnitude

CLE DLE-pos DLE-neg

mean 0.2615 0.3384 0.4000

std. err. 0.1657 0.1573 0.1337
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Bandi, F. M. and R. Renò (2012). Time-varying leverage effects. Journal of Econometrics 169,

94–113.

39



Black, F. (1976). Studies of stock price volatility changes. In Proceedings of the 1976 Meetings of

the American Statistical Association, pp. 171–181.

Bollerslev, T., J. Litvinova, and G. Tauchen (2006). Leverage and volatility feedback effects in

high-frequency data. Journal of Financial Econometrics 4, 353–384.

Boswijk, P. H., R. J. Laeven, and X. Yang (2015). Testing for self-excitation in jumps. working

paper.
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Annals of Statistics 41 (3), 1485–1515.

Curato, I. V. (2015). Estimation of the stochastic leverage effect using the Fourier

transform method. Available at SSRN: http://ssrn.com/abstract=2615271 or

http://dx.doi.org/10.2139/ssrn.2615271.

Curato, I. V. and S. Sanfelici (2015). Measuring the leverage effect in a high frequency trading

framework, Chapter 24, pp. 425–446. Elsevier.

Eraker, B., M. S. Johannes, and N. Polson (2003). The impact of jumps in equity index volatility

and returns. The Journal of Finance 58, 1269–1300.

Fan, J., X. Han, and W. Gu (2012). Estimating false discovery proportion under arbitrary covari-

ance dependence. Journal of the American Statistical Association 107 (499), 1019–1035.

Fan, J. and Y. Wang (2008). Spot volatility estimation for high-frequency data. Statistics and Its

Interface 1, 279–288.

Fan, Y. and J. Fan (2011). Testing and detecting jumps based on a discretely observed process.

Journal of Econometrics 164, 331–344.

40



Heston, S. L. (1993). A closed-form solution for options with stochastic volatility with applications

to bond and currency options. Review of Financial Studies 6, 327–343.

Jacod, J. (2012). Statistics and high frequency data. In A. L. Matthieu Kessler and M. Sorensen

(Eds.), Statistical Methods for Stochastic Differential Equations, pp. 191–310. Taylor and Francis.

Jacod, J., Y. Li, P. A. Mykland, M. Podolskij, and M. Vetter (2009). Microstructure noise in the

continuous case: The pre-averaging approach. Stochastic Processes and Their Applications 119,

2249–2276.

Jacod, J., M. Podolskij, and M. Vetter (2010). Limit theorems for moving averages of discretized

processes plus noise. Annals of Statistics 38, 1478–1545.

Jacod, J. and P. Protter (2011). Discretization of Processes. Springer-Verlag.

Jacod, J. and M. Rosenbaum (2013). Quarticity and other functionals of volatility: Efficient

estimation. Annals of Statistics 41 (3), 1462–1484.

Jacod, J. and V. Todorov (2010). Do price and volatility jump together? Annals of Applied

Probability 20, 1425–1469.

Kalnina, I. and D. Xiu (2016). Nonparametric estimation of the leverage effect using information

from derivatives markets. Journal of the American Statistical Association, forthcoming.

Li, J., V. Todorov, and G. Tauchen (2016). Adaptive estimation of continuous-time regression

models using high-frequency data. Working paper.

Li, J. and D. Xiu (2016). Generalized method of integrated moments for high-frequency data.

Econometrica, forthcoming.

41



Veraart, A. E. D. and L. A. M. Veraart (2012). Stochastic volatility and stochastic leverage. Annals

of Finance 8 (2-3), 205–223.

Vetter, M. (2012). Estimation of correlation for continuous semimartingales. Scandinavian Journal

of Statistics 39 (4), 757–771.

Vetter, M. (2015). Estimation of integrated volatility of volatility with applications to goodness-

of-fit testing. Bernoulli 21 (4), 2393–2418.

Wang, D. C. and P. A. Mykland (2014). The estimation of leverage effect with high-frequency

data. Journal of the Americal Statistical Association 109, 197–215.

Yu, J. (2005). On leverage in a stochastic volatility model. Journal of Econometrics 127 (2),

165–178.

42


