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Abstract

We solve, theoretically and numerically, the problems of optimal portfolio choice and indif-
ference valuation in a general continuous-time setting. The setting features (i) ambiguity
and time-consistent ambiguity averse preferences, (ii) discontinuities in the asset price pro-
cesses, with a general and possibly infinite activity jump part next to a continuous diffusion
part, and (iii) general and possibly non-convex trading constraints. We characterize our
solutions as solutions to Backward Stochastic Differential Equations (BSDEs). Generaliz-
ing Kobylanski’s result for quadratic BSDEs to an infinite activity jump setting, we prove
existence and uniqueness of the solution to a general class of BSDEs, encompassing the
solutions to our portfolio choice and valuation problems as special cases. We provide an ex-
plicit decomposition of the excess return on an asset into a risk premium and an ambiguity
premium, and a further decomposition into a piece stemming from the diffusion part and a
piece stemming from the jump part. We further compute our solutions in a few examples
by numerically solving the corresponding BSDEs using regression techniques.
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1 Introduction

Two main problems in asset pricing are portfolio choice and valuation in incomplete markets.
The study of the dynamic portfolio choice problem goes back to Merton [64, 65] who ap-
proached it using stochastic control theory. It has since been considered by numerous authors
in a wide variety of settings. Contributions relevant to the setting considered in this paper
include Cvitanic and Karatzas [21], who prove existence and uniqueness of the solution (op-
timal portfolio) to the utility maximization problem in a Brownian filtration when restricting
investment strategies to convex sets; and Kallsen [52], who solves the continuous-time utility
maximization problem in a market where asset prices follow exponential Lévy processes; both
using the duality or martingale approach. For further references, see the review of Schacher-
mayer [80].

A widely adopted method for valuation in incomplete markets is indifference valuation
(Carmona [14]). It is related to the portfolio choice problem: under indifference valuation, the
price of a claim is such that the agent is indifferent between selling and not selling the claim,
provided that each of the two alternatives is combined with an optimal portfolio choice that
maximizes utility. Particularly popular is exponential indifference valuation due to its analytical
tractability on the one hand — the exponential form induces a convenient translation invariance
property — and its theoretically appealing properties, especially in a dynamic context, on the
other (El Karoui and Rouge [30], Delbaen et al. [22], Kabanov and Stricker [51], Mania and
Schweizer [63]). See also Hu, Imkeller and Miiller [47], Becherer [5], Morlais [67, 68], and
Cheridito and Hu [17] for recent work on portfolio choice.

Many decision-making problems, including asset pricing problems, involve ambiguity (prob-
abilities unknown) and it is important to distinguish them from decision-making problems under
risk (probabilities given). A rich class of models for decision-making under ambiguity is that
of variational preferences (Maccheroni, Marinacci and Rustichini [61]). It includes the popular
maxmin expected utility of Gilboa and Schmeidler [37], also referred to as multiple priors, and
the multiplier preferences of Hansen and Sargent [42, 43] as special cases. Under ambiguity,
the true probabilistic model is unknown to the decision maker (model uncertainty); approaches
that explicitly account for the possibility that a specific probabilistic model may not be cor-
rect but only an approximation, are commonly referred to as robust approaches. Such robust
approaches are both normatively (prescriptively) appealing and empirically (descriptively) rel-
evant. But for our results that follow it is unimportant which point of view one takes, whether
prescriptive or descriptive.

Recently, there has been a growing interest in the effects of ambiguity on portfolio choice
and valuation; see, for example, Chen and Epstein [15], Lazrak and Quenez [57], Maenhout [62],
Miiller [69], Schied [81], Kloppel and Schweizer [54], Féllmer, Schied and Weber [34], Owari
[71] and Sircar and Sturm [82]. The importance of incorporating ambiguity in the problems
of portfolio choice and valuation is not merely theoretical as ambiguity plays a potential role
in addressing important failures of purely risk-based settings that rule out model uncertainty.
Examples of such failures include the equity premium puzzle and the home-bias puzzle (Chen
and Epstein [15]). However, all above-mentioned papers featuring ambiguity are restricted to
a continuous Brownian setting and do not allow for any discontinuities (jumps) in the asset
price processes.

In this paper we solve, theoretically and numerically, the two canonical optimization prob-
lems of portfolio choice and indifference valuation, under ambiguity and time-consistent ambi-



guity averse preferences, and in a further general continuous-time setting: besides a continuous
diffusion component, we allow for a general and possibly infinite activity jump component in
the asset price processes, and for general and possibly non-convex trading constraints regard-
ing buying and short-selling. Note that by the nature of jumps, the jump component of a
semi-martingale asset price dynamics model is not unlikely to be exposed to model uncertainty
and with such a model a setting allowing for ambiguity and ambiguity averse preferences seems
particularly appealing.

As regards the ambiguity averse preferences, we assume in particular that the economic
agent exhibits recursive variational preferences, with linear or logarithmic utility, or recursive
multiple priors, with power or exponential utility. The reason that in the case of power or
exponential utility the analysis necessarily needs to be restricted to multiple priors, is that oth-
erwise the preferences do not exhibit recursiveness, also known as Bellman’s principle, which
is crucial to characterize and compute the optimal solutions. We note that, with linear util-
ity, recursiveness is equivalent to time-consistency. For the use of this or similar notions of
time-consistency, see, among many others, Duffie and Epstein [28], Chen and Epstein [15],
Epstein and Schneider [31] and Ruszczyniski and Shapiro [78]. To illustrate the generality of
the ambiguity averse preferences considered in this paper, we explicate that specific examples
include the relative entropy (Kullback-Leibler divergence), a discrete set of dynamic worst case
scenarios, mean and variance of the underlying asset known, mean known to lie in a certain
interval, and ball-robustification.

We prove that the solutions to the optimal portfolio choice and (in the case of linear or
exponential utility) valuation problems can be characterized as solutions to backward stochastic
differential equations (BSDEs). As a by-product, which is of interest in its own right, we prove
existence and uniqueness of the solution to the general class of BSDEs with jumps and having
a drift (or driver) that grows at most quadratically, encompassing the solutions to our portfolio
choice and valuation problems as special cases. Essentially, this by-product generalizes the
important existence and comparison results obtained by Kobylanski [55], for BSDEs with at
most quadratic growth in a Brownian filtration, to a general and possibly infinite activity
jump setting. We also provide an economic interpretation to the optimal solutions and to the
excess return on an asset, which we explicitly decompose into a risk premium and an ambiguity
premium, and further decompose into a piece stemming from the diffusion part and a piece
stemming from the jump part. We finally provide a numerically tractable procedure to compute
our solutions (by numerically solving the corresponding BSDEs using regression techniques)
and implement this procedure in a few examples.

A BSDE may be seen as a dynamic programming principle in a continuous-time stochastic
setting. BSDEs play an important role in stochastic control; see, for example, Pardoux and
Peng [72], Duffie and Epstein [28], El Karoui, Peng and Quenez [29], Chen and Epstein [15],
Lazrak and Quenez [57], Skiadas [83], Lim [59, 60], Hamadéne and Jeanblanc [41], Horst and
Miiller [44], and also the early work of Bismut [11]. In a Markovian setting, BSDEs correspond
to semi-linear PDEs. As is well-known, the solution to a utility maximization problem with
a numerical preference representation specified by a BSDE can in turn be characterized as
a solution to a BSDE; see Kloppel and Schweizer [54] and Sircar and Sturm [82] for recent
applications of this technique to portfolio choice and indifference valuation in a purely Brownian
setting. Therefore, a standard approach in utility maximization has been to try converting
the utility maximization problem into a ‘BSDE type’ stochastic control problem. One of the
advantages of this approach to portfolio choice is that, contrary to static duality methods,



BSDESs can also deal with non-convex trading constraints. Another advantage of using BSDEs
is that their solutions can be efficiently computed numerically by Monte Carlo simulation.

Applications of BSDEs to utility maximization problems in incomplete markets in a Brow-
nian setting include (with exponential, logarithmic or power utility) Hu, Imkeller and Miiller
[47], Cheridito and Hu [17], and (with a general utility function) Horst et al. [45]; for a setting
with continuous filtration or non-continuous filtration (but with exponential utility), see Mania
and Schweizer [63], Morlais [67] and Becherer [5]. Morlais [68] generalizes some of these results
adopting an exponential utility function and allowing for infinite activity jumps in the asset
price processes, in a purely risk-based setting without ambiguity. In particular, she proves
existence and uniqueness results for a special quadratic BSDE. Mathematically, we general-
ize parts of her and Becherer’s [5] results by proving existence and uniqueness results for all
possibly infinite activity jump BSDEs with a driver function that grows at most quadratically.
Contrary to Morlais [68], Becherer [5] and Kobylanski [55], who prove their results by solving
the primal problem, we use a duality approach, generalizing parts of the methods developed by
Delbaen, Hu and Bao [24] in a Brownian filtration to a setting with possibly infinite activity
jumps.

There are only few works studying the portfolio choice and valuation problems in a setting
with jumps and ambiguity. Bordigoni, Matoussi and Schweizer [13] study ambiguity using
the relative entropy and Jeanblanc, Matoussi and Ngoupeyou [50] generalize this work to a
non-continuous filtration, assuming a one-point jump distribution. Bjérk and Slinko [12] study
asset prices with jumps in a non-utility framework, using different possible pricing kernels to
obtain good-deal bound prices. Independently of our work, Delong [25] and @ksendal and
Sulem [70] have recently also considered model uncertainty in continuous-time jump settings.
In Delong [25], the portfolio choice problem is solved in a setting with a degenerate, one-
point jump distribution in case of a linear utility and multiple priors preferences. Jksendal
and Sulem [70] use a generalization of multiple priors different from variational preferences.
Assuming that the solutions of certain BSDEs exist and that comparison principles hold, they
derive optimality conditions using techniques different from ours. Besides they (can) only
characterize the optimal solution in the case of deterministic jump coefficients. Not only do we
characterize the solutions to the portfolio choice and indifference valuation problems in a general
continuous-time setting, we also provide new existence and uniqueness results for solutions to
the corresponding class of BSDEs. We are not aware of other work on the problems of portfolio
choice and indifference valuation that allows for a comparable degree of generality for all these
features — ambiguity, jumps, and general trading constraints — together.

To sum up:

e There are not many works to date that consider both ambiguity and jumps in portfolio
choice and valuation. If ambiguity and jumps are considered, then typically the analysis
is restricted to degenerate, one-point jump distributions and the preferences that are
treated are less general than those analyzed in our paper.

e To our best knowledge, we are the first to provide a complete solution to the portfolio
choice and indifference valuation problems in a general and possibly infinite activity
jump setting under time-consistent ambiguity averse preferences, proving existence and
comparison results for the corresponding BSDEs.

e Since we do not rely on saddle point techniques (except in the case of power utility) we



are able to solve the portfolio choice problem also for possibly non-convex (but compact)
trading constraints.

e Mathematically, our contribution is to show that BSDEs with a driver that grows at
most quadratically have unique solutions. This generalizes Kobylanski’s [55] results on
the existence of solutions to quadratic BSDEs (arguably one of the main results in the
BSDE literature) to an infinite activity jump setting.

It is known that in a setting without ambiguity, discontinuities (jumps) in the asset price
process have a discernible impact on the optimal portfolio choice (Kallsen [52], Ait-Sahalia,
Cacho-Diaz and Hurd [1]). This impact is especially prevalent when allowing for dependencies
between the jumps, limiting the benefits of international diversification, whence providing a
(further) possible explanation for the empirically observed home-bias in investors’ portfolios.
The impact of constraints on buying and short-selling is documented in a rich literature (see
Rubinstein [76] for a review); it is important to account for such trading constraints in the
most general fashion.

This paper is organized as follows. In Section 2, we introduce the basic setting and review
some preliminaries for BSDEs. In Section 3, we specify and characterize in detail the economic
agent’s preferences. In Section 4, we state the dynamic optimization problems, characterize
their solutions and prove existence and uniqueness of these solutions. Section 5 examines the
decomposition of the excess return on an asset. Section 6 discusses and illustrates the numerical
implementation in some examples. Proofs are collected in the Appendix.

2 Setting and Preliminaries

2.1 Asset Return Dynamics, Trading Constraints and Preferences

We consider an economic agent with initial wealth wg, which he can invest in a risk-less bond
and risky assets. At a given maturity time 7" > 0, the agent is endowed with an additional payoff
F. A classical problem in asset pricing is the question of how the agent should determine his
optimal investment strategy. To answer this question, one first needs to address the following
issues: (i) How to model the dynamics of the risky assets? (ii) Which constraints to impose
on the trading strategies allowed? (iii) How to evaluate the quality of the agent’s investment
strategy? This section describes our approach to these issues.

For the dynamics of the risky assets, we assume a continuous-time setting with a general
and possibly infinite activity jump component next to a general continuous diffusion component
with stochastic volatility, and ambiguity. Large jumps in asset prices represent major financial
economic shocks, such as market crashes, shocks resulting from unexpected announcements of
the FED, or environmental disasters causing sudden movements in prices. Ambiguity, which is
also referred to as model uncertainty, means that the ‘true’ probabilistic model is unknown to
the decision maker. A setting featuring ambiguity seems particularly appealing when allowing
for jumps in asset prices: large jumps are inherently rare and the jump component of the model
may therefore easily be subject to model uncertainty.

Formally, we consider a filtered probability space (2, F, (Ft)icpo,r], P). Throughout, the
dependence of random variables, stochastic processes, predictable functionals, counting mea-
sures, sets and subdifferentials on w will be suppressed whenever possible. We assume that the
probability space is equipped with two independent stochastic processes:



(i) A standard d-dimensional Brownian motion W.

(ii) A real-valued marked point process p on [0,7] x R\ {0}. We denote by N,(ds,dx) the
associated random (counting) measure. We assume its compensator (or mean or intensity
measure) Np(ds, dz) to be of the form

N, (ds,dz) = ny(dz)ds.

We suppose that the measure n,(dx) is non-negative and satisfies for every € > 0, n, (R \
{(—¢€,€)}) < co. Furthermore,

/ (Jz|* A D)ny(dz) < oo.
R\{0}

Throughout, equalities and inequalities between random variables are meant to hold P-
almost surely (a.s.); two random variables are identified if they are equal P-a.s. We denote
by L°(n,) the space of B(R \ {0})-measurable functions. Equalities and inequalities between
functionals of L°(n,) are meant to hold n,(dz)-a.s., and two elements of L%(n,,) are identified if
they are equal n,(dr)-a.s. Furthermore, for any ¢, inequalities between F; ® L°(n,)-measurable
random functionals are meant to hold dP X n,(dz)-a.s.; two elements are identified if they
are equal dP X n,(dz)-a.s. Similarly, inequalities between stochastic processes are meant to
hold dP x ds-a.s. For functionals f : R\ {0} — R and h : R\ {0} — R, define f-h :=
fR\{O} f(z)h(z)n,(dr). Furthermore, for H : R\ {0} — Rf with H = (hl, e hk), let f-H :=
(f-nY,.... f-hF).

We assume that the filtration (.Ft)te[()’T] is the completion of the filtration generated by W
and N,. We denote by P the predictable o-algebra on [0,7] x  with respect to (F;). Let
N,(ds,dzx) := N,(ds,dzx) — Np(ds, dz). Financial economic shocks arrive at discrete points in
time. Every shock comes with a ‘marker’ z. Np(s,dz) is one if there is a shock at time s with
marker x and ny(dz)ds is the expected number of shocks with size ‘around’ z per time unit
‘around’ time s.

Remark 2.1 All our results also hold for a general counting measure with a predictable com-
pensator taking the form ny(s,w,dx)ds with multi-dimensional markers.

We assume that the financial market consists of a risk-free bond with interest rate normal-
ized to zero, and n < d stocks. The price process of stock i, denoted by S*, evolves according
to the semi-martingale dynamics

dsi
S

= bidt+a§th+/ Bi(x)Ny(dt,dz), i=1,...,n, (2.1)
R\{0}

where b (0%, 37) are R (R'*? R)-valued, predictable and uniformly bounded stochastic pro-
cesses. b’ is commonly referred to as the excess return: the holder of a risky asset should
be compensated for the risk he is bearing. The second term on the right-hand side (RHS) of
(2.1) represents noise due to ‘normal’ market movements and is locally Gaussian. We assume
that o has full rank and ooT is uniformly elliptic, i.e., eI, < or0] = K I,,, for some constants
K > & > 0. The third term on the RHS of (2.1) represents the dynamics due to financial



economic shocks. 3%(x) is the impact (jump size) of a shock with ‘marker’ = on the asset price
St We assume that ¢ is larger than —1 to ensure positivity of S%, i = 1,...,n. We further
assume that 5° € L>*, i =1,...,n, where
< oo} ;
o

||||co denotes the norm given by the (essential) supremum over all w. This condition is satisfied,
for instance, if either n, is finite, or if for all |z| small and for all s, |5s(z)| < K|z|. If n < d,
the market is incomplete. If n = d, the market is typically still incomplete because of the jump
component of the model. Our model includes all Lévy processes with finite or infinite jump
activity. In recent years, the latter case has often been adopted in financial engineering. As b, o,
and 8 in (2.1) can all depend on w and s, our results also hold for processes that do not have
independent increments. In particular, our setting also includes the case of stochastic volatility
and / or stochastic jump rates as long as our boundedness and integrability conditions are met.

In the special case that ny(R\ {0}) < oo holds, so that we only have finitely many jumps,
S may be written as a standard jump diffusion model, originating from Merton [66]. In this
restricted model, asset returns evolve according to

S

L3> = {EHI:I is P @ B(R \ {0}) measurable and

sup [ (o) Py (do)
R\{0}

dsi . . .
L — bidt + oldW; + ZI{T;Zt}J;, i=1,...,n,
l

(2
t—

for jump times 7%, T%, ... with corresponding jump sizes Ji, J3, .. ..
For i =1,...,n, the process 7} represents the amount of capital invested in stock 7 at time
t, and the number of shares is g—’z The wealth process X (™ of a predictable trading strategy =
t

with initial capital wg satisfies

nooet
Xt(ﬂ) = wp + Z/
i=1"0

We assume that the agent is allowed to choose trading strategies taking values in a compact
and possibly non-convex set II € R'*" a.s. We call 7 an admissible trading strategy if it is
predictable and takes values only in II. We denote the set of all admissible trading strategies

i t t ~
"u g8t = wo + / Tu(oudWy + bydu) + / / uBu(@) N, (du, dz).
S 0 o Jr\{0}

by A. Since the set II is compact, for every trading strategy =, the wealth process sup, ]Xt(ﬂ)\
is square-integrable. By our assumptions, there exists a local martingale measure @/ under
which W, — fot ol (0s0%)"1bsds is a Brownian motion (and hence S is a local martingale). In
particular, there is no arbitrage in the market.

The agent, choosing an investment strategy (m;) and being endowed with a payoff F', even-
tually holds the portfolio F+X:(F7r) at maturity. The final issue to be addressed is which decision
criterion to use when evaluating the quality of the agent’s portfolio choice. The classical de-
cision criterion in a setting featuring ambiguity is Savage’s [79] subjective expected utility; it
postulates that the economic agent specifies a subjective probability measure P and a utility
function u, and evaluates the portfolio according to U(F + X}ﬂ)) =E [u(F + X}W) )} . We note

that specifying the measure P in our setting implies specifying (estimating) the excess return
by, the Gaussian volatility o;, and the impact of the jumps (;(z)n,(dz): a challenging econo-
metric exercise. From a normative point of view, it is appealing to consider instead a robust



decision criterion, which makes sure that the portfolio choice accounts for a class of potential
probabilistic models and is not based on just one single model. Furthermore, also empirically
it is well-known in decision theory that, faced with ambiguity, agents make decisions that are
incompatible with subjective expected utility.

Various alternative approaches to decision-making under ambiguity have emerged in the
literature. Among the best-known alternatives is multiple priors, of Gilboa and Schmeidler
[37] (see also Wald [85] and Huber [48]); it postulates that an economic agent evaluates his
portfolio according to U (F +X7(f)) = infgen Eglu(F +X7(3r))], where M is a set of probabilistic
models (or priors). Multiple priors was significantly generalized by Maccheroni, Marinacci, and
Rustichini [61] to the theory of variational preferences, postulating that an economic agent
evaluates his portfolio according to

U(F +X57) = inf (Bolu(F + X77)] +¢(@)}. (2.2)

Variational preferences go beyond multiple priors preferences by allowing to attach a plausibil-
ity index ¢ (the penalty function) to every probabilistic model @ in the class of probabilistic
models Q under consideration. If ¢(Q)) = oo, the minimum in (2.2) is not attained in this
particular ), meaning that probabilistic models with infinite penalty are considered fully unre-
liable and are effectively excluded from the analysis. Multiple priors occurs when ¢(Q) = Iy,
the penalty function that is zero if Q € M and oo otherwise, attaching the same plausibility
to all probabilistic models in M. In the case that w is linear, multiple priors corresponds to
coherent risk measures (Artzner et al. [2]) and variational preferences corresponds to convex
risk measures (Ben-Tal and Teboulle [8, 9], Follmer and Schied [32], Frittelli and Rosazza Gi-
anin [35], Ruszczynski and Shapiro [77, 78]); see Laeven and Stadje [56] for further results on
these connections.

To distinguish between U(-) and u(-), we call U an evaluation and u a utility function. To
approach the portfolio choice and valuation problems using a dynamic programming principle,
we (need to) consider the dynamic version of (2.2), which is given by

Uy(F + X\ = essinfgeo{Egu(F + X\™)|F] + ct(Q)}, (2.3)

in which ¢;(Q) reflects the esteemed plausibility of the model @ given the information up to
time t. The portfolio choice problem is then finally given by

Vi(F) = max Uy (F + X\7),
mTeA
at time t.
The class of all alternative probabilistic models considered is specified as

Q = {Q| If for an event A: P(A) =0, then also Q(4) =0} = {Q|Q < P},

i.e., all measures () that are absolutely continuous with respect to the reference model P are
considered; sets with probability zero under the reference model P still have probability zero
under the alternative model ). It means, for example, that if, with probability one under P,
the financial asset has only finitely many jumps, it also has only finitely many jumps under
every (). We subsequently assume that w is linear, exponential, power or logarithmic. In the
case that u is linear or exponential, the problem is translation invariant, in particular, the



optimal solution will be independent of the wealth of the agent. In this case, we can also
explicitly calculate the indifference valuation. We further consider essentially all plausibility
indices that induce recursive preferences; see Section 3 for further details, and illustrations with
specific examples.

Remark 2.2 Notice that the conditional expectation in (2.3) is, in fact, defined only Q-a.s.,
while equations and the essential infimum need to be defined P-a.s. Therefore, to avoid cumber-
some notation and to ensure that conditional expectations are defined P-a.s., we will through-
out, for a stopping time ¢ and a random variable F, denote Eq [F|F,| = E [{, 7 F|F,], with

Q
o = %ZC; where the Radon-Nikodym density D? =K [3—%\]—}} > 0 is strictly positive, and

£ = 1 whenever D? = 0; see also Cheridito and Kupper [18], who have used a similar
notation when dealing with dynamic monetary utility functions.

2.2 BSDEs

We solve the portfolio choice and indifference valuation problems using backward stochastic
differential equations (BSDEs). We denote by | - | the Euclidean norm and by S the class
of all one-dimensional (F;)-adapted semi-martingales X which are bounded. Define |X|gec =
[[sup; [ X[l - Let

T
H? = {Z:(Zl,...,zd) Ziepfomzl,...,dandE[/ ]ZSIst} <oo}.
0

Furthermore, we denote by L?(dP x ny(s,dz) x ds) all functions measurable with respect to
P @ B(R\ {0}) which are square-integrable with respect to dP x n,(dx) x ds.
Consider a function

g: [0,7T] x Q@ x R* x L2%n,) — R
(t, w, z, Z) — g(t,w, z, 2).

To simplify the notations, we will often write g(t, z, 2) instead of g(t,w, z, Z). Furthermore, we
will usually write g(¢, -, -) instead of g(t,w,-,-). Notice that this is consistent with suppressing
the w argument when considering random variables or stochastic processes.

A solution to the (one-dimensional) BSDE with driver ¢ mapping to R and terminal con-
dition F € L>(Fr) is a triple of processes (Y, Z, Z) € S® x H? x L*(dP x ny(dz) x ds) such
that

dY}/ = g(t, Zt, Zt)dt — thWt — / Zt(LL‘)Np(dt, dl’) and YT =F.
R\{0}

Often times BSDEs are written in the following equivalent form:

T T T
Yt:F—/ g(s,Zs,ZS)dS—I—/ zdes+/ / Z.(2) N, (ds, dx).
¢ ¢ ¢ Jr\(0}

Since the terminal condition is given at maturity time 7', BSDEs have to be computed back-
wards in time, whence their name. As in many applications a terminal reward is specified,
and solutions of BSDEs satisfy a dynamic programming principle, BSDEs are often applied to



solve problems in stochastic control and mathematical finance; see the references provided in
the Introduction.

It is well-known that if g(¢,0,0) is in L>°(dP x dt) and g is additionally uniformly Lipschitz
continuous, that is, there exists K > 0 such that for all ,

lg(t, 21, 21) — g(t, 20, 20)| < K<\Z1 — 20| + \//R\{O} |21() — 50(!E)|2np(d$)>,

then a unique solution to the corresponding BSDE exists; see, for example, Royer [75]. However,
in the case of exponential or power utility, the BSDEs we will encounter below have drivers
that grow quadratically, and, in the case of linear or logarithmic utility, for penalty functions
‘erowing slowly’, the corresponding BSDEs will also not be Lipschitz continuous. Therefore,
new analytical and numerical tools need to be developed.

Example 2.3 Let F' be a bounded payoff and define Y; = E[F|F;]. Then, Y7 = F. Moreover,
by the martingale representation theorem (see, e.g., Jacod and Shiryaev [49], Ch. 3, Sec. 4)
there exist predictable processes Z and Z such that Y satisfies

dY; = —Z,dW; — / Z(x)Np(dt, dz).
R\{0}

This is the simplest BSDE with g = 0.

Hence, a conditional expectation may be seen as a BSDE with g = 0. It explains why BSDEs
are also being referred to as g-expectations. The name should express that a BSDE may be
viewed as a generalized (usually non-linear) conditional expectation with an additional drift.

Example 2.4 Let I’ be a bounded payoff and define Y; = Ey¢ [F|F]; recall that Q/ is the local

martingale measure under which W; — fg 03 (0s08) " thyds is a Brownian motion. Then, by the
martingale representation theorem and the Lenglart-Girsanov theorem (Jacod and Shiryaev
[49], Ch. 3, Th. 3.11), Y satisfies

dY; = —Zyo (op07) " 1bydt — ZpdWy — / Zi(x)Ny(dt, dzx) and Yy = F.
R\{0}

This is a linear BSDE with g(t, z, 2) = —za] (o107) " tb;.

In a Markovian setting, g-expectations correspond to viscosity solutions to semi-linear parabolic
PDEs (or PIDEs in the case of jumps); see, for example, El Karoui, Peng and Quenez [29] in a
Brownian setting and Barles, Buckdahn and Pardoux [4] in the case of jumps. However, because
BSDEs are more general (since they do not rely on a Markovian structure) and because our
numerical implementation is based on Monte Carlo simulations which are again based on the
structure of the BSDE, we will approach the problems under consideration using BSDEs rather
than using PIDEs.
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3 Ambiguity Averse Preferences and Dynamic Programming

We specify below assumptions on the plausibility index ¢ in (2.2)-(2.3), which essentially cor-
respond to assuming that the agent exhibits recursive preferences. But let us first take a closer
look at the set of alternative models @ = {Q|Q < P}. It is well-known that in a Brownian
filtration, every probability measure () absolutely continuous with respect to P can be identi-
fied with a stochastic drift ¢ : [0,7] x Q — R? such that W; — fg ¢sds is a Brownian motion
under Q. It means that in a Brownian filtration, the setting of ambiguity, in which a collection
of probability measures (priors) is considered rather than a single probability measure, can
be fully described by a collection of drifts q. Note that the dependency of W and ¢ on w is
suppressed.

Now let us address the question of how to model ambiguity with respect to the jump
component of the model. If @ € Q, we denote by D; the Radon-Nikodym derivative D; =

E [%U—}] and define 7 = inf{t|D; = 0} AT. One can show that there exist a predictable

stochastic drift ¢ and a random function ¢ : [0,7] x Q@ x R\ {0} — [—1, 00), measurable with
respect to P ® B(R \ {0}), such that the Radon-Nikodym derivative can be written as

D = exp{/ qsdWs — / 15| ds+/ /R\{O} »(ds, dx)
+/0 /IR\{O}[log(1+¢s($))—ws(x)]Np(ds,dx)}, (3.1)

for t < 7. In particular, ) is uniquely characterized by g and .

Expression (3.1) is seen as follows: Clearly, the Radon-Nikodym derivative D; is a martin-
gale. For t > 7, we must have that D; = 0. Furthermore, the whole path of D;_ is strictly posi-
tive up to time 7, see Lemma A.19 in the Appendix. By Jacod and Shiryaev [49], Ch. 3, Sec. 4,
there exist a locally integrable (see Definition A.2 in the Appendix) process H : [0,T] x Q — R,
measurable with respect to P, and a locally integrable function H : [0,7] x Q x R\ {0} — R,
measurable with respect to P ® B(R \ {0}), such that

th = thWt + / ﬁt(ﬂj’)Np(t, dﬂl’),
R\{0}

with Dy = 1. For ¢ > 7, we must have that H; = 0 and H; = 0. Therefore, defining 0/0 = 0,
we obtain

D, = Dy | Htaw, + / H’f(‘T)Np(dt,dx)
Dy r\{0} Di-

= Dy | qdW; + / Yi(z)Np(dt, dz) |, (3.2)
R\{0}

for ¢t < 7. The solution to this SDE is given by the stochastic exponential
& (fot qsdWs + fot fR\{o} Ys(x) Ny (ds, dw)), which equals the right-hand side in (3.1). The stochas-
tic exponential is also referred to as the Doléans-Dade exponential.

Since Dy is non-negative, we must have that ¢ > —1, dP x n,(t,dz) x dt-a.s. If @ is
equivalent to P, then, by the Lenglart-Girsanov theorem, WtQ =W; — fg qsds is a Brownian
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motion and the process N has compensator n®(s,dz) := (1 + 95(x))n,(dz) under Q (see, for
instance, Jacod and Shiryaev [49], Ch. 3, Th. 3.11). Consequently, 1+ 1 is the new density of
the jump component under ). Hence, ¢ may be seen as an additional drift that the reference
model P may have failed to detect, and 1) may be seen as a misspecification of the size and
frequency of the jumps under P. (The model P corresponds to ¢ = ¢ = 0.)

Next, let us discuss which class of plausibility indices (penalty functions) to use in (2.2)-
(2.3). For dynamic choice under uncertainty, the notion of time-consistency plays an important
role. A dynamic evaluation (Uy(F))o<i<r is time-consistent if, for ¢ > s,

Ut(Fg) 2 Ut(Fl) implies US(FQ) Z Us(Fl)

In other words, if F5 is preferred over F; under all possible scenarios at some time ¢, then Fj
should also have been preferred before time t; see the references provided in the Introduction
for further details.

The next theorem shows that a dynamic evaluation Uy(F') = infgp on 73 {EQ[F|Fi] +
¢:(Q)} induces time-consistent decisions (or, equivalently with linear utility as we show, induces
recursiveness or Bellman’s principle), if and only if a lower semi-continuous plausibility index
c takes a certain form, specified below. The theorem extends a very recent result (restated as
(i)-(iii) and (b) in the theorem) by Tang and Wei [84], who in turn generalized to a setting
with jumps an earlier result of Delbaen, Peng and Rosazza Gianin [23] obtained in a Brownian
setting.

Theorem 3.1 Suppose that U takes the form Uy(F) = essinfigpio=p on r{Eq[F|F] +

c(Q)} with ¢,(P) = 0 and that there are only finitely many markers, i.e., there exists xy,...,x) €
R such that ny(dz) = a'éy, (dz) + ... + a*8,, (dx) for positive constants a',. .., a", with §, the

Dirac measure. Then the following statements are equivalent:

(i) U is time-consistent on L?.

(i) U is recursive, i.e., U satisfies Bellman’s principle, meaning that for every t € [0,T],

F e L? and A € F;, we have Uy(Up(F)14) = Ug(F14).
(iii) There exists a function

r: [0,7] x Q@ x RY x L%n,) — RuU{co}
<t7 w? q’ w) H r(t7w7q7w)7

measurable with respect to PRB(RY)@U (withU denoting the Borel o-algebra on L*(ny)),
which is convex and lower semi-continuous in (q,1) such that for every t € [0,T],

a(Q) = Eq [/tTT(S,qs,ws)ds Ft} : (3.3)

Furthermore, for a general, possibly infinite, measure n, (not necessarily restricted to only
finitely many markers) we have:

(a) (i) < (i) and (iii) = (ii) (still) hold.
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(b) (i) (or (ii)) (still) implies that there exists a function r(t,q,v) such that (3.3) holds for
al Q@ e A:=U2 Ay, where

-1
A, = {Q < P“qt| <n and—nT(l/\M) < |(z)| < n(1A|z|), for dtxny(dz)-a.s. allt,x}.

(c) If, for a p > 1, ¢ has a nonempty relative interior (with respect to the LP-norm topology)
given by

ri(dom(c)) := {Q € Q| thereexistsan & > 0 such that forall Q' € Q with

% -
P dpP

/
. < e wehave ¢(Q') < oo},

and if ¢ is continuous on ri(dom(c)), then, under (i) (or (ii)), (3.3) must (even) hold for
all Q € {Q < Py € L?(ny) with ¢y (z) > —(1 A|z]), for dt x ny(dz)-a.s.allt,z}.

Remark 3.2 In the case of multiple priors, i.e., Uy(F) = essinfgen Eg [u(F)|F], with an
arbitrary strictly increasing utility function u, one may, for optimization purposes, also consider
the corresponding certainty equivalent CE;(F) := u™! (essinfgen Eq [u(F)|F] ); it induces the
same optima. As CE; is invariant under linear transformations of u, one may assume, without
loss of generality, that «w(0) = 0. Now (CE,) satisfies Bellman’s principle if and only if the
evaluation defined by Uy(F) := essinfgens Eg [F|Fi] does. If Uy(F) is recursive, then, for any
t €1[0,7) and A € F;, we have

CEo(CEL(F)14) = u™ (Up(u(u (Tp(u(F)))1a))) = v (Uo(u(u (Ur(u(F14))))))
= u N (Up(Up(u(F1,4)))) = v (Up(u(F14))) = CEo(FI,), (3.4)

where we used in the second equality that «~*(0) = u(0) = 0. From (3.4), it follows immediately
that, for s < ¢, we have that CE.(Fy) > CE¢(F}) implies that

CE4(Fy) = CE(CE,(F»)) > CE4(CE((F,)) = CE4(F,).

Therefore, in the case of multiple priors, requiring recursiveness under an arbitrary utility
function can be reduced to requiring recursiveness under linear utility, so that Theorem 3.1
can be applied. Notice that r in this case is equal to an indicator function (in the sense of
convex analysis). Therefore, under multiple priors, (3.3) corresponds to the existence of a
convex, closed, set-valued predictable mapping, say C, taking values in R? x L? (np) such that

r(s,q,%) = Ic,(q,%).

Remark 3.3 We have seen in Remark 3.2 that multiple priors is time-consistent if one consid-
ers terminal payoffs F. However, if one considers (discounted) payment streams, then Geman
and Ohana [36] show that already expected utility can induce time-inconsistent preferences.
Time-consistency in their (discrete-time) setting can be defined by postulating that if, in every
scenario at time t + 1, a payment stream (Ag)s—¢41,...7 is preferred over a payment stream
(Bs)s=t+1,...,r and additionally at time ¢t the payment resulting from A, say Ay, is larger than
the payment resulting from B, By, then, at time ¢, (As)s—, .7 should also be preferred over
(Bs)s=t,....1; see Definition 2.1 in Geman and Ohana [36]. Geman and Ohana show that the
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evaluation defined as the certainty equivalent under expected utility of the discounted sum of
the payment stream (i.e., U(A) = u_1<EQ [’U,(Zz;t BS_tAS)U-"t} ), with  a discount factor)
is not time-consistent. By summing up payment streams over time, preferences at different
points in time are not necessarily preserved, due to changes in wealth. For example, suppose
for simplicity that 8 = 1 and that at every scenario at time ¢ + 1, (Ag)s=¢+1,.. 7 is preferred
over (Bs)s—t+1,.. T (e.g., because B entails the possibility of a large future loss). Suppose fur-
thermore that A and B generate the same positive, degenerate payoff at time ¢, say m > 0,
so Ay = By = m. Then, by adding m to the discounted sum of both future payment streams,
i.e., by considering at time ¢ the payoffs m + ZZ:H—I Ag and m + ZZ:H_I B,, the agent can
now be less risk averse compared to time ¢t + 1, because his wealth has changed. Therefore,
at time ¢, he may prefer the payment stream (Bg)s—, .1 over (Ag)s—, . 7 (although at time ¢
both payment streams pay the same amount, m, and at ¢ + 1, A is always preferred over B).
This issue does not arise, however, when only considering terminal payoffs, as we do (or when
considering additive expected utility).

Note that in the absence of time-consistency, the agent would today consciously choose
portfolio strategies that he knows he will regret in every future scenario. Theorem 3.1 shows
that time-consistency automatically induces (is essentially equivalent to) a structure as in (3.3).
Conversely, penalty functions given by (3.3) always lead to time-consistent preferences. Hence,
we will postulate that ¢ has the structure given by (3.3). That is, we henceforth assume:

(H1) (¢t) is of the form

T
c(Q) = Eqg u r(s, qs,ws)ds’}}] for all Q < P,

for a suitably measurable function r : [0, 7] x Q@ x R? x L9(n,,) — R{ U{co}. Furthermore,
we assume that 7 is convex in (g,) and that r(¢,0,0) = 0.

Note that, since r is non-negative, r is minimal at ¢ = 0 and ¥ = 0. These values of ¢ and
correspond to the probabilistic model P. Hence, the reference model has the highest esteemed
plausibility. At first sight, L%(n,) may seem a rather large space for ¢. But condition (H2)
below will restrict the values of 1 considered somewhat, and will set r equal to infinity for
implausible, not well-integrable, .

Let us consider some examples for which (H1) is true:

Examples 3.4 (1) Relative Entropy: A standard example of the plausibility index in (2.2)
is the relative entropy (Csiszar [20], Ben-Tal [7]) defined as

dQ . .
«(Q) = aHy(QIP), a>0, with Hy(Q|P)= Eq [bg (dp)‘ft] , FQeQ;

oo, otherwise.

The relative entropy is also known as the Kullback-Leibler divergence; it measures the
distance between the distributions Q and P. The relative entropy is used e.g., by Hansen
and Sargent [42, 43] in the context of model robustness in macroeconomics. The in-
terpretation is that the economic agent has a reference measure P, but the measure P
is merely an approximation to the probabilistic model rather than the true model. As
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such, the agent does not fully trust the measure P and considers many measures (), with
esteemed plausibility decreasing proportionally to their distance from the approximation
P. The parameter « may be viewed as measuring the degree of trust the agent puts in
the reference measure P, with the limiting case « 1 oo (respectively, a | 0) corresponding
to a maximal degree of trust (respectively, distrust).

In our setting, it may be seen that

c(Q) = aHy(Q|P) = Eq [/tTr(s, ds, ws)ds’ft] , (3.5)

with ¢ and 1) corresponding to the measure @ according to (3.1), and r(s, ¢, ) = %’CZP +
Jefoy @2 (¥(2))np(dz) with

_ [ Q+ylogl+y) -y, ify=-1;
Wly) = { 00, otherwise;

see Proposition A.25 in the Appendix.

Known Mean: Let us consider the case in which the agent knows the mean return (which,
because interest rates are normalized to zero, corresponds to knowing the excess return),
(bt). In this case, the agent restricts attention to probabilistic models of the stochastic
evolution of S with mean return equal to (b;). By the Girsanov-Lenglart theorem, the
mean return (th) of S under a measure @ is given by

b? = by + 0vqs + V1 - By

Therefore, the agent will only consider probabilistic models that lie in the set
M = {Q < P\(th) = (bt)} = {Q < Plowgi + ¢ - By =0,  for Lebesgue-a.s. all t}.

This corresponds to a penalty function ¢;(Q) = Eg [ftT (s, gs, ws)ds)ft] , with

o 0, if UsQ"‘w'ﬁs:O;
r(s:0,9) = { 0o, otherwise.
In particular, the evaluation satisfies (H1). Note that if b = 0 and w is linear, U corre-
sponds to the lower no-arbitrage bound (which is equal to minus the superhedging price
of minus the payoff).

However, notice that, in full generality, the set of probabilistic models, M, is non-compact,
which may lead to an ill-posed portfolio choice problem. For example, if we have a termi-
nal payoff F', independent of S, then the corresponding evaluation would be given by an
essential infimum leading to a degenerate, non-semimartingale evaluation. Therefore, we
will assume that the agent only considers additional drifts and additional jump densities
below a certain bound, i.e., he only considers additional drifts ¢ satisfying |¢q| < B for a
constant B > 0 and additional jump densities v satisfying d~ < ¢ < d* with boundary
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functionals d* € L2(np) and —1+¢e <d” <0 <d" for an € > 0. This yields a penalty
function of the form

0, if osq+¢-Bs=0, [q¢/<B, d~ <¢<dF
oo, otherwise.

(o) = {

Of course, B and d* could also be time-dependent.

Interval Mean: Now let us consider the case in which the agent is certain that the mean
return, (b;), lies between known lower and upper bounds, (b; ) and (b;"), respectively. In
this case, the agent restricts attention to probabilistic models that give rise to a stochastic
evolution of S with mean (b;) taking values between (b, ) and (b;"). As before, we will
assume that the agent considers only additional drifts ¢ satisfying |¢| < B for a constant
B > 0 and additional jump densities 1 satisfying d~ < ¢ < d* with d* € L?(n,) and
—1+e<d <0<d" for an € > 0. Hence, the agent only considers probabilistic models
that lie in the set given by

M= {Q < Plb, < b? <bS, |@|<B, d <y <d", for Lebesgue-a.s. all t}
:{Q<<P|bt__bt§0't%+wt'ﬁt§b?__bt> lg:| < B,

d- <, <d", for Lebesgue-a.s. all t}.

This corresponds to a penalty function ¢;(Q) = Eg [ftT (s, gs, @bs)ds)}}] , with

0, if by —bs<osq+v-Bs <bf—bs, |g| <B, andd” <1 <dt;
o0, otherwise.

o) =

Discrete dynamic worst case scenarios: Suppose that, at each future time instance s > t,
the agent considers a family of finitely many values ¢i,...,qr s for the future drift,
gs, and finitely many values vy s,...,% s for the future jump density, s, all equally
plausible. He then decides to adopt a worst case approach by taking the expectation
with respect to each corresponding measure and next computing the minimum. That is,
let

M = {Q € Q’ for Lebesgue-a.s. all s: (gs,%s) € {(¢is,%js)] 5,5 € {1,... ,L}}}.

This corresponds to a penalty function
T
0@ =g | [ rtsavad 7 (3.6)
¢
where 7 takes the form

r(s,q, ) = { 0, if (q,¢)¢€ conv({(qi,s,%,s)ﬁ,j e{1,... ,L}});

oo, otherwise.
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(Recall that conv(-) of a set is given by its convex hull.) The reason that the penalty
function defined in (3.6) induces the same preferences as the indicator function (in the
sense of convex analysis) of M is that the minimum of a convex function taken over a
compact convex set can always assumed to be attained in the extreme points of the set.

Notice further that by redefining the reference measure, one may assume, without loss of
generality, that 0 € conv({(qi,s,wj,s)]i,j e{1,... ,L}}).

(5) Ball-Robustification: Suppose the agent wants to test the robustness of the reference
measure P. In this case, he restricts attention to alternative probabilistic models @
that are contained in a small ball around P, say M = {Q < P|lg:| < 0, & < o <
ét, for Lebesgue-a.s. all t}, for ad > 0 and deterministic functions é* € L?(n,) satisfying
—1+e<é <0< érfor an € > 0. This gives rise to the penalty function ¢;(Q) =

Eq [ftT 7(8, s, Lbs)ds)}"t] , with

0, if g <4, & <yp<er
oo, otherwise.

(o) = {

Because ambiguity with respect to the jump part is reflected by a whole functional, 1,
in the argument of r (rather than a real number), we need proper integrability conditions.
Specifically, we need the definition of an Orlicz space. Let W(z) := (1 + |z|) log(1 + |z|) — |z].
Note that U is a Young function, meaning that it is lower semi-continuous, convex, not identical
zero, and symmetric with W(0) = 0. A slight modification of the standard Birnbaum-Orlicz
space is given by the Banach space

LY (ny) := {f € L(ny)| T(af(x))ny(dz) < oo for some a > 0} :

R\{0}

with Luxemburg norm

‘f|L‘I’(np) = inf {a > 0‘ R\{0) \iJ(fiLx))np(dx) < 1} .

Generally, Banach spaces with Luxemburg norms arising from a Young function, say H, are
called Orlicz spaces and, as above, are denoted by L (n,). If H(z) = aP with p > 1, the
corresponding Orlicz space is given by LP(n,). For applications of the theory of Orlicz spaces,
see, for instance, Hindy, Huang and Kreps [46], Biagini and Frittelli [10], Cheridito and Li
[16], and Drapeau and Kupper [27]. See also Rao and Ren [74] for an overview of Orlicz space
theory.

To ensure that the problem is well-posed and solvable in terms of BSDEs, we need to
assume proper growth and regularity conditions on the penalty function. These assumptions
should be as weak as possible to include most penalty functions. In particular, our assumptions
should be satisfied for all our examples above. In a recent paper, Delbaen, Hu and Bao [24]
showed, in a Brownian setting, that if the penalty function grows slower than the relative
entropy, then the corresponding (dual) superquadratic BSDEs we will derive below, do not
have a solution. (In this case, one could conceivably still try to approach the problem with
supersolutions to BSDEs; see Drapeau, Heyne and Kupper [26]. However, this would make
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numerical computations highly challenging and also change the nature and interpretation of
the solutions.) Therefore, we will only consider penalty functions that can be bounded from
below in terms of the relative entropy, i.e., we will assume that there exist K7, K} > 0 such
that ¢(Q) > —K] + KLH(Q|P). In view of (3.5), this corresponds to r satisfying the following
growth condition, henceforth denoted by (H2):

(H2) There exist constants K1, Ko > 0 such that for all ¢, all ¢, and all ¢ € L°(n,),

[(1+ 9 () log (1 + ¢y () — ¢t($)]np(d$)> :

r(t,q,v) > —Ki+ K» (|Q\2 +/
R\ {0}

Furthermore, we suppose that r is weak™ lower semi-continuous in (g, 1) € R? x LY (np).

Because there exists a constant C' > 0 such that C¥ > ¥, assumption (H2) implies that only
functions ¢ € L¥(n,) need to be considered. Thus, we will for the remainder of this paper
restrict 7(t,w, -, ) to the Banach space R? x LY (n,).

The next condition (H3) corresponds to the condition needed by Kobylanski [55] in a
Brownian filtration, to guarantee that a comparison principle holds. We extend the condition
so that it encompasses our setting with jumps. Specifically, we suppose that (sub)differentials
of the penalty functions r can be bounded from below in terms of the differentials of the relative
entropy. (The notion of subdifferentiability on a Banach space is a generalization of the usual
definition of differentiability; it is frequently used for convex functions, see the Appendix for
details.) That is, we henceforth assume:

(H3) There exist constants K, Ky > 0, such that for all (¢,q) and 1 € LY (np)
047 (t, q,¥)| > —K1 + Kslql. (3.7)

Furthermore, there exist K € L?(n,) and K3 > 0 such that for all (¢, ¢) and all ¢) € L‘i’(np)
we have

|0y (t, q,9)] > —K + Ks|log(1 + )| (3.8)

These inequalities should hold for every element of the corresponding subdifferential, where we
set [f] = co. (Our proofs will show that (3.8) actually only needs to hold for those elements
of Oyr that are bounded by a fixed constant.) We will see later that (H3) entails that the
subgradients of the drivers of our BSDEs satisfy conditions that, in the case of no jumps,
correspond to the conditions needed by Kobylanski [55] in a Brownian setting. Of course,
conditions (H1)-(H3) are satisfied in all our examples above.

4 The Optimization Problems and Their Solutions
We are interested in the following optimization problem:

Vi(F) = max Uy (F + x{M, (4.1)

where U, is defined in (2.3) with plausibility index ¢ satisfying (H1)-(H3), A is the set of
admissible trading strategies, F' is the (bounded) payoff at maturity and Xj(fr) is the wealth
process.
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4.1 Linear Utility Under Variational Preferences

We first assume that the utility function « in (2.3) is linear. Then one may see from Lemma

A.35 in the Appendix that, for every admissible m, U;(F + Xgr)) is finite. We solve problem
(4.1) with the help of BSDEs. Define

g(t,z,é) L= Sllp_ {Zq+§¢_r(t7Q7¢)}7 <42)
q€RLYELY (nyp)

for t € [0,T], 2 € R4 and z € L?(n,(dx)) N L=(ny(dz)). It follows from Lemma A.16 in
the Appendix that g is real-valued, suitably measurable, and g > 0 with equality if z = 0
and Zz = 0. So g assumes its minimum at zero. The next theorem shows that, under our
assumptions, U(F') is the unique solution to a BSDE with terminal condition F' and driver
function g.

Theorem 4.1 Assume that (H1)-(H3) hold. Then U,(F) is the unique solution to the BSDE

AUL(F) = g(t Z0, Z0)dt — ZydW, — / Zi(2) N, (dt, da),
R\(0)
Ur(F) = F (4.3)

As a by-product, while proving this theorem, we show in the Appendix that every BSDE
with driver function g growing at most quadratically (for Z in a uniformly bounded set) has a
unique solution satisfying a comparison principle; see Theorem A.29, Remark A.31, and Propo-
sition A.34. This generalizes Kobylanski’s theorem on existence and uniqueness of solutions of
quadratic BSDESs, one of the main results in the BSDE literature, to an infinite activity jump
setting.

If ¢ = 0 would hold, the evaluation U would correspond to a conditional expectation; see
Example 2.3 of Section 2.2. However, our economic agent is ambiguity averse, considering all
alternative probabilistic models, with different degrees of esteemed plausibility. As a result,
g > 0 which decreases the evaluation. Z is the stochastic (Malliavin) derivative of the evaluation
with respect to W. Comparing (4.3) with (2.1), we see that Z and Z play the same role for
U(F) as o and ( for the instantaneous return of the asset price. Therefore, Z and Z may
be seen as measuring the degree of fluctuation (‘variability’) of the evaluation coming from
the Brownian motion and from the jumps, respectively. The larger |Z|, the more variability
is due to the local Gaussian part, and the larger \Z |, the more variability is due to the jump
component of the model. Next, for illustration purposes, we may employ the penalty functions
of Examples 3.4 and compute the corresponding driver functions using (4.2). This yields the
following driver functions:

Examples 4.2 (1) Relative Entropy: As the Fenchel dual conjugate of a((1+x)log(14x)—
x) is given by a(e®/® — 2 — 1), one verifies that in this case

ot 2, 5) = im? + a/R\{O} (exp {Z(j)} S ZS”) n(dz).

(2) Known Mean: First, note that, as in this case the penalty function only takes the values
zero and infinity, ¢(t, -, ) must be positively homogeneous. Define ((z, 2), (¢,v)) := qz +
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Z-¢ and Cp == {(¢;1) € RY x L¥(ny) : A(q. )T =0, |q| < B, d~ <1 < d*} C
R? x L%(n,), where the matrix A; = (o¢,3:) maps from R? x L%(n,) to R™ (with -’
denoting multiplication in the second component). Then we have

g(taza'g) = Ssup <(272)7(Q7 ¢)>
(a:¥)€C:
Next, note that in the case that the only constraint is A¢(g, )T = 0 (so that B = oo and
d* = +00), the solution to the supremum above would be 0 if (2, 2)T € Image(A}) and

infinity else, where A} = (o, 3;)7 is the adjoint transpose of A;. This is due to the fact
that if there exists y € R™ such that (z,2)T = Afy, then

((2,2), (¢, 9)) = (Ay)", (¢, ¥)) = (v, Ae(q,4)T) = 0,

for (g,1) € C;. Now, given (z,2) € R? x (L%(n,) N L%(n,)), we can find a unique
orthogonal decomposition

(Z, 2) = Pt(zv 2) + (Za 2)J_7
where P;(z, Z) is the projection of (z,Z) on the image of A;. Denote the first component
of Pi(z,%) by Pi(z) and the second component of P;(z,%) by Pi(Z). Define 2+ and -
similarly. Then we obtain

gt,z2) = swp {R()a+ AE) v+ ta+ 20}
(qy'l,b)ECt

= sup {ztq+zt -y} =Bzt +d" 20t a2t
(q,w)eCt

where, for all z, we define 27+ (x) = z+(z) if 24 (x) > 0 and zero else; 27+ is defined
similarly.

Interval Mean: As in this case only probabilistic models are considered that yield an
excess return within a certain predefined interval, we get from (4.2) that

g(t,z,2) = sup {zq+Z-9}, (4.4)
(Qﬂl’)ect

where
Co={(@v) eRI < LY (mp)lby i S o+ 9B <bf b, lal < B, d”<w<dt.

In full generality, it is not possible to simplify the driver function further. However, (4.4)
yields that, for fixed (¢, z, 2), the driver function can be obtained as the maximum of a
linear programming problem.

Discrete dynamic worst case scenarios: It is straightforward to verify that in the case of
a worst case scenario evaluation we obtain

g(t,z,2) = .maxL gtz + 'HllaX Z-ig.
i

i=1,..., =1,...,
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(5) Ball-Robustification: In the case of a ball-robustification procedure we get

~— -

glt,z,2) = b|z| + 27 - et —z7 . &,
concluding our examples.

Next, let
f(s,2,2) := ing{—ﬂbs+g(s,z—7ras,2—7rﬁs)}. (4.5)
e

Consider the BSDE
T ~ T T ~ ~
Yi=F —/ f(s,Zs, Zs)ds —|—/ ZsdW +/ / Zs(x)Np(ds,dx), tel[0,T]. (4.6)
¢ ¢ ¢ Jr\{0}

Theorem 4.3 Assume that (H1)-(H3) hold. Then the BSDE (4.6) has a unique solution Y,
and Vo(F') = Yo +wg. Furthermore, the optimal strategy w3 is a predictable process that attains
the infimum in (4.5) for (z,2) = (Zs, Zs), i.e.,

f(37257 Zs) = _W:bs + 9(3725 - 7r;k(757 Zs - W:ﬁs)-

Remark 4.4 The dynamic evaluation under the optimal portfolio choice problem (4.1) is given
by Vi(F) =Y, +Xt(7r*). Note that, thanks to the time-consistency of (U(F"))o<t<7, the optimal
portfolio strategy (7} )o<i<7 is ‘time-consistent’ as well, in the sense that at every (future)
time instance ¢, the corresponding argmax also agrees with (7})s>¢. If the evaluation were not
time-consistent, the agent would at time zero choose 75 because it lies on the optimal decision
path (7} )o<t<T, although he already knows that he may not stick to this decision path in the
future.

Heuristically, the optimal portfolio choice proceeds as follows: The excess return, b, is typically
positive. Hence, the term —mbs in the minimization problem (4.5) will ‘tempt’ the economic
agent to invest in risky assets (that is, to pick a positive 7) so as to benefit from the excess
return. The agent is, however, ambiguity averse. Therefore (Z, Z ), representing the variability
of the evaluation due to the Brownian component and the jumps, is penalized by g(s, Zs, ZS)
(before hedging). The agent chooses a 7 to partially hedge Z and Z. The aggregate penalty

after hedging is given by ¢(s, Zs — w05, Zs — msfs). Summarizing, when the agent chooses a
7w € 11, he faces a tradeoff between:

(a) Benefitting from the excess return mgbs.

(b) Diminishing the variability of the evaluation due to the locally Gaussian part. (That is,
choosing 7 such that |Zs — w505/ is small.)

(c) Diminishing the variability of the evaluation due to jumps. (That is, choosing 7 such
that |Zs — 74| is small.)

Note that if there are only finitely many jumps, (4.5) is a finite dimensional convex optimization
problem that can be computed numerically efficiently; see the examples in Section 6 below.
Since the portfolio choice problem is translation invariant, it is straightforward to see that the
indifference valuation is given by Vo (F') — V5(0).
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4.2 Exponential Utility Under Multiple Priors Preferences

A utility function that is particularly popular in insurance and financial mathematics (Goovaerts
et al. [39, 40], Follmer and Schied [33] and Mania and Schweizer [63]) and decision theory (Gol-
lier [38]) is the exponential utility function. When w is exponential, we provide a solution to the
portfolio choice and indifference valuation problems in the case that the penalty function c in
(2.3) is an indicator function. This means that we are in the multiple priors setting of Gilboa
and Schmeidler [37]. For exponential utility this restriction is necessary because otherwise
time-consistency may not hold.
Specifically, let v > 0 and consider the robust expected utility optimization problem

W(F) = supU(F+X¥r))
meA

F4+ x5
= inf — |E T , 4.7
reA Qe (Qlexp{ g }D -

for a weakly compact set M C Q. In order to have time-consistent preferences we assume that
M is given by

M = {Q € Q‘ (gs,¥s) € Cs, for every s € [O,T]},

for a convex, closed, set-valued predictable mapping C taking values in R x L‘I’(np). Fur-
thermore, we assume that C' is ‘bounded’ in the sense that there exist constants B,e > 0
and bounded L2 functions —1 4+ ¢ < d~ < 0 < d*t such that for every s and w we have that
(q,7) € Cs(w) implies that |¢| < B and d; < v < df. For examples of the set M, see Examples
3.4: (2)-(5). The case that C' = {0} corresponds to ambiguity neutrality, i.e., to effectively not
considering any alternative probabilistic model at all; in this case, M = {P} would hold. As
exp{—xz} > 0, the expectation is well-defined for every trading strategy.

Contrary to Section 4.1, in which the economic agent is ambiguity averse but not risk
averse (linear utility), the economic agent solving (4.7) is both ambiguity averse and risk
averse. Note that v > 0 measures the absolute risk tolerance of the agent (with large values of
~ corresponding to a low level of risk aversion and low values corresponding to a high level of
risk aversion).

Clearly, by construction Cy(w) is weakly compact so that we can define

g(t,z,z2): =  sup {Zq+7<exp{j} - 1) -d}} (4.8)

(:4))€C ]
= zq?Jrv(eXp{%}*l)-w?. (4.9)

In case that the set M is defined as in Examples 3.4: (2)-(5), the function g is obtained by
replacing in the driver functions given in Examples 4.2: (2)-(5), Z by v(e*/7 —1).

The next theorem shows that the solution to the optimization problem (4.7) can be obtained
directly from the solution to a BSDE:
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Theorem 4.5 The solution to (4.7) is given by Vo(F) = —exp{—%(fwo +Y0)}, where (Yy) is
the unique solution to the BSDE with terminal condition F' and driver function:

1
f(s,2,2) := inf { — by + — |z — wo|? + §(s, 2 — WO, Z — 7Ps)
mell 2’)/

I (P ECEUICI NS TEL Py SR

~y

with g defined in (4.8). Furthermore, the optimal strategy 7 is a predictable process that attains
the infimum in (4.10) for (z,2) = (Zs, Zs).

Remark 4.6 If the expectation in (4.7) is replaced by an expectation conditional on F;, then
the optimal solution is given by V,(F) = — exp{—%(Xt(7r ) 4+ Yy}

Remark 4.7 BSDEs have been a rather popular tool to solve the utility maximization problem
under exponential utility, in a wide variety of settings (the exponential utility maximization
problem is connected to the popular minimal entropy martingale measure and to the Esscher
density). In the case that there are no jumps, i.e., n, = 0, and there is no ambiguity, i.e.,
d™ = d~ = 0, our general solution above reduces to the solution obtained by Hu, Imkeller
and Miiller [47]; see also El Karoui and Rouge [30]. These results have been generalized
for continuous price processes to continuous and non-continuous filtrations, see for instance,
Mania and Schweizer [63] and Becherer [5], in a purely risk-based setting. Recently, Morlais
[68] generalized the results by Becherer [5] by allowing for infinite activity jumps in the asset
price processes. However, none of these works allow for ambiguity, as opposed to our setting.
In the case that there are no jumps but there is (Brownian) ambiguity (i.e., n, = d" =d~ =0)
and the trading constraints are assumed to be convex, our general solution above reduces to
the solution obtained by Miiller [69].

In (4.7), the economic agent is ‘penalized’ on the one hand for the risk he faces (represented by
the y-exponential utility) and on the other hand for the ambiguity he encounters (represented
by the set C).

Note that by (4.9), g(¢, Z, Zt) can be decomposed into two parts — the first one due to
the uncertainty about the Brownian motion and the second one due to the uncertainty in the
jump part. Thus, the penalty in (4.10) in total features four terms (the terms with plus sign
with two terms due to g):

(1.) The first term is due to the (local) risk coming from the Brownian motion. This term
would equal zero if the agent is not risk averse (i.e., if v 1 00) or if, after hedging, there
is no locally Gaussian randomness affecting the evaluation (i.e., if Z; — w505 = 0).

(2.) The second term, g(s, Zs — w505, Zs — mss), is due to the (local) model uncertainty. This
part again consists of two terms, see (4.9). One part due to the (local) model uncertainty
about the Brownian motion and one part due to the (local) model uncertainty about the
jumps. The first part would equal zero if there is no model uncertainty in the Brownian
part (i.e., if C' contains only elements with ¢ equal to zero) or if, after hedging, there is no
randomness due to the Brownian part affecting the evaluation (i.e., if Zs—ms05 = 0). The
second part would equal zero if there is no model uncertainty in the jump part (i.e., if C
contains only elements with ¢ equal to zero) or if, after hedging, there is no randomness
due to the jump part affecting the evaluation (i.e., if Z; — s = 0).
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(3.) The last term in (4.10) (with plus sign) is due to the (local) risk coming from the jump
part; it is the jump analog of (1.).

Note that C, the set of alternative models for the drift ¢, is uniformly bounded. Conse-
quently, we must have in (4.9) that |z¢*| < const|z|. Therefore, in (4.10), the economic agent
is penalized quadratically, by |Zs — ms04|%, due to the (local) risk coming from the Brownian
motion, and linearly by a penalty bounded by |Zs; — ms05|, due to the (local) model uncer-
tainty about the Brownian motion. Consequently, if |Zs; — ws0| is small, i.e., if there is ‘little’
Brownian randomness left after hedging, then the penalty due to ambiguity will be larger than
the penalty due to risk. From a Taylor expansion of the third term (with plus sign) in (4.10)
and the jump part in (4.9), it may be seen that the same observation is true for the jump
part. Therefore, if there is only ‘little’ randomness left after hedging, the evaluation is more
(negatively) affected by ambiguity than by risk. On the other hand, if there is ‘much’ Brownian
randomness left after hedging, (meaning that |Z; — 7s05] is large), then the penalty due to risk
is of a higher order than the penalty due to ambiguity. It is interesting to note, however, that
the latter effect is not true for the jump part, since the penalties for risk and ambiguity arising
from the jump part are of the same order if |Zs — 5P| is large.

Since the problem is again translation invariant, it is straightforward to see that the indif-
ference valuation is given by —vylog(—Vo(F)) — (—vlog(—V5(0))).

4.3 Logarithmic Utility Under Variational Preferences

We now consider predictable trading strategies p that represent the part of wealth (rather than
the absolute amount) invested in stock i. The admissible trading strategies are supposed to take
values in a compact set C C R1*™. We assume that C3 € [~1468,00) for a 6 > 0. We denote
the set of all admissible trading strategies by A; it is the set of all R'*"-valued predictable
processes p with p;, € C, dP x dt a.s. The wealth process X of a trading strategy p with
initial capital wq satisfies

tP _w0+2/ XP) pu dSz

t
= wo + / Xg@pu(audwu+budu)+ / / X o Bu(@)Ny(de, du). (4.11)
0 E\{0}

It follows that

t t t ~
Xt(p) = wo& </ Puauqu + / pubudu + / / puﬂu(‘r)Np(du’ dl‘)) . (4‘12)
0 0 0 JR\{0}

We solve the optimization problem

T
Vo = sup mf EQ [fylog (X( )) +/ T(87Qsaws)d8] , v>0. (4.13)
pEAR 0

Let

F(5,%,2) : = in { ~apb = [ oy [los(1 4 93~ 8]y ) (41

peC

+ g\pOSIQ +g(s,z — ypos, 2 — ylog(1 + pﬁs))}-
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For examples of r and the corresponding g, see Examples 3.4 and 4.2. For simplicity we assume
that f is convex. We consider the BSDE

T T T
Yt:0—/ f(s,Zs,Zs)der/ ZSdWS+/ / Zs(x)Ny(ds,dx), te€[0,T]. (4.15)
t t t JR\{0}

Theorem 4.8 The BSDE (4.15) has a unique solution (Y, Z, Z) and the solution to (4.13) is
given by
Vo =Yy + 7log(wo).

Furthermore, the optimal strategy p% is a predictable process that attains the infimum in (4.14)

for (z,2) = (Zs, ZS).

Remark 4.9 If the expectation in (4.13) is replaced by an expectation conditional on Fi,
then the optimal dynamic evaluation for a logarithmic utility function is given by V; = Y; +

7log(X{™)).

Remark 4.10 In the case that there are no jumps and there is no ambiguity, problem (4.13)
is solved by Hu, Imkeller and Miiller [47]. The case of ambiguity without jumps is considered
by Miiller [69]. For the case of a degenerate jump distribution with a penalty function ¢ given
by the relative entropy, see Jeanblanc, Matoussi and Ngoupeyou [50]. These results all occur
as special cases of our general solution provided above.

4.4 Power Utility Under Multiple Priors Preferences

When w is power, we provide a solution to the portfolio choice problem in the case that the
penalty function ¢ in (2.3) is an indicator function. This means that we are in the multiple
priors setting of Gilboa and Schmeidler [37]. For a power utility function this restriction is
necessary because otherwise time-consistency may not hold.

As in the logarithmic utility case, we consider predictable trading strategies p that represent
the part of wealth invested in stock i taking values in a convex and compact set C C R
with C8 € [~1+6,00) for a 6 > 0. The robust expected utility optimization problem with a
power utility function then takes the form

(X(p))v
Vo = sup inf BEg |~—12-|, 4.16
0 sup suf, Q[ 5 (4.16)

where we assume that 7 < 0 and (in order to induce time-consistent decisions) that the set
M C Q has the same form as in the exponential case. Let
1)

F(s,25) : = ink {vpbs L=
peC 2

2
z _ ~
|pos|? + il 2' + vposz + §(s,vpos + 2,7 log(1 + pBs) + Z)

+ /R\{O} {(1 + Pﬁs($))')’e§(w) — Z(x) — ypPs(z) — 1} np(d:c)}, (4.17)

where the function g was defined in (4.8). We consider the BSDE

T T T
1@:0—/ f(s,ZS,ZS)ds+/ ZSdWSJr/ / Zy(x)N,(ds,dx), te[0,T]. (4.18)
t t t Jr\{0}
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Theorem 4.11 The BSDE (4.18) has a unique solution (Y, Z,Z) and the solution to (4.16)
s given by

Y
Vo = %GXP{ Yo}
Y

Furthermore, the optimal strategy pg is a predictable process that attains the infimum in (4.17)
for (z,2) = (Zs, Zs).

Remark 4.12 For power utility, the dynamic evaluation under the optimal portfolio choice is

(=*)
given by V; = S exp{-v3}.

Remark 4.13 In the case that there are no jumps and there is no ambiguity, problem (4.16)
has been considered by Hu, Imkeller and Miiller [47]. The case of ambiguity without jumps has
been considered by Miiller [69]. To the best of our knowledge, the case with jumps, whether
finite or infinite jump activity and whether with or without ambiguity, has not been solved as
yet.

5 Decomposition of the Excess Return

Let us consider the case in which the trading set II is specified as [ﬂ'llower,ﬂ'lllpper] X ..o X
[ wer» Tapper)s for —oo < mi o < 7wl < 00, i = 1,. .,n. That is, the economic agent
is allowed to buy (shortsell) at most an amount of 7’ (ﬂfower) of stock ¢. Suppose first that
u is linear. We then have that

upper

Tower Sﬂ—gﬂ—upper

f(s,2,2) = inf { —7bs + g(s,2 — w0, 2 Wﬁs)} (5.1)

The function f consists of a penalty (the term with plus sign) minus a reward. Denote by
7 the optimal strategy attaining the infimum in (5.1). The Karush-Kuhn-Tucker conditions
imply that attaining the infimum in (5.1) is equivalent to the existence of Lagrange multipliers
0 < uf, ¢ taking values in R™ such that

0= ,U/: - C: —bs — Usazg(sa — 057 -7 Bs) - 29(37 — 057 -7 /Bs) Bs: (52)

where the integral is understood componentwise and equality holds with respect to elements
in the subgradients. Furthermore, u3, ¢} satisfy the complimentary conditions, i.e.,

pot (et — Wﬁpper) =0 and C(n — 7 ) =0, fori=1,...,n, (5.3)

where Typper (Tower) denotes the vector consisting of the components ﬂupper (ﬂfower).
Note that (5.2)-(5.3) is a convex optimization problem. In particular, (5.2) yields that the
excess return must satisfy

bs _( Cs) Os zg(s Zs — — Us: - 55) - zg(S,Z T Us: - 65) Bs. (5-4)

Hence, under linear utility, the excess return can be decomposed into three parts: The first
term on the right-hand side of (5.4) is due to the trading constraints, the second term is an
ambiguity premium due to model uncertainty about the Brownian motion, and the third term
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is an ambiguity premium due to model uncertainty about the jumps. Note that the Lagrange
multiplier p and ¢} represent the sensitivity of f, the difference between penalty and reward,
with respect to the upper and lower hedging constraints. Furthermore, 050,9(s, Zs—7}os, Zy—
7 Bs) may be seen as the sensitivity of the overall penalty with respect to the uncertainty of
the Gaussian part. Finally, 0:g(s, Zs — mios, Zs — m5Bs) - Bs may be seen as the sensitivity of
the overall penalty with respect to the uncertainty of the jump part. Hence, (5.4) yields that
the excess return is the sum of the agent’s different sensitivities with respect to the constraints
and to the two sources of ambiguity.

Next, let us look at the case of an exponential utility function as considered in Section 4.2,
so that the economic agent is not only ambiguity averse but also risk averse. Using a similar
argument as above, it may be seen that we obtain the following decomposition of the excess

return:

0573 — osoint ~

~ _Usazg(sazs _F:US7ZS _F:ﬁs)

— 0z9(s, Zs — W:US,ZS —7aBs) - PBs — (exp {ZS_VW:/BS} - 1) - Bs. (5.5)

bs :(:u‘: - C:)

Note that the first term on the right-hand side of (5.5) is again due to the trading constraints.
The second term is a risk premium due to the risk arising from the Brownian motion, and the
third term is an ambiguity premium due to model uncertainty about the Brownian motion.
Furthermore, the fourth term is an ambiguity premium due to model uncertainty about the
jumps, and the fifth term is a risk premium due to the risk arising from the jump part.

Decompositions may also be obtained for a power or a logarithmic utility function. Mul-
tiplying both sides in (5.4)-(5.5) by oi(os0l)~!, one obtains similar decompositions for the
‘market price of uncertainty’.

6 Numerical Implementation

6.1 Some Analytics

Reconsider the setting of Section 5, with d = 1. The generalization to higher dimensions is
straightforward. Suppose further for simplicity that the jump component is time-homogeneous
and features only finite activity jumps with degenerate jump size. In this case, we can integrate
with respect to a Poisson process diVy, instead of with respect to N (dt,dx). Write dN; =
dN; — adt, where a is the intensity of N under P. Note that, for fixed w and ¢, 8; and Z; now
correspond to real numbers and not to functions. We furthermore assume that b, o, and
do not depend on w and t. Let us look at the case of exponential utility and consider the set
C = {q € R||g|oc < A}. Furthermore, let D = {¢[d~ < ¢ < d*}. The definition of D implies
that for the new intensity a?, we have (14+d~)a < a® = (1+v)a < (1+d*)a. Then the driver
function corresponding to the optimal portfolio choice is given by (cf. (4.10))

1
f(z,2) = inf {—TI‘b—l- 2—|z—7r<7]2—|—)\|z—770’\
Y

Tlower Sﬂ'gﬂ'upper

1 5 1 - _ -
+ (’y(exp{—v(ﬂﬁ -2)}—-1+4 ;(Wﬁ - z)) + gao(m, z))a}, (6.1)
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with ga(r, 2) := v max (d+(_1 +exp{—L(nf — 2)}),d"(~1 + exp{—L(mp — 2)})). To solve
minimization problem (6.1), we take the derivative with respect to 7, set it equal to zero, and
divide by 2. This yields

b1 A
0e 2t ;(77* - g) — gsign(g — ")+ %a
6 — — 7T*/B -z *
— (14 d* Loy + I npy + Lz ld ™, d*]) exp{— }i= hes(n).

One easily verifies the following proposition:

Proposition 6.1 The driver function f in (6.1) is explicitly obtained by plugging m* :=
(Tlower V. h;é(())) A Tupper into the right-hand side of (6.1), i.e., ™ solves the optimization
problem.

We note that in this example h;é(O) can be computed, for instance, by using Newton’s algo-
rithm for every (z, Z) € R2.

6.2 Algorithm

In the simplified setting of this section, we can write (4.6) as
T R T T
Y,=F —/ (5, Zs, Z3)ds +/ ZsdW, +/ Z.dN,, te0,T). (6.2)
t t t

Assume that F = H(Wrp, Nr) for a function H : R? — R. The discrete-time BSAE correspond-
ing to (6.2) is given by

Yin = Yiriyn — f(ih, Zin, Zin)h + Zin AWy, + Zin AN 1yp- (6.3)
Taking conditional expectations on both sides, we obtain
Yin = E Yol Fin] = £(ih, Zin, Zin)h. (6.4)

We solve (6.3)-(6.4) by backward recursion, using a ‘Longstaff-Schwartz type’ of regression.
For similar (yet slightly different) approaches in the case of a Brownian filtration, see Bender
and Steiner [6] and the references therein.

Define an equi-spaced time grid {0, h, 2h, 3h, ..., T} consisting of L+ 1 points with 7" = Lh.
Simulate M paths of the Brownian motion W and the Poisson process N, generating values
w; ) and n; i, where w;  (n; k) is the value of the k-th path of the Brownian motion (Poisson
process) at time ih. Denote by Angiqy, = ngqr1), — ik and define Awy), similarly. We
aim to compute the corresponding y; x, and we know that, at maturity, yrr = H(wrk, nr k).
For this purpose, we first compute approximations to E [Y(z‘+1)h|}—ih] , Zip and Zih, depending
on the simulated paths. This proceeds in the following way. It follows from (6.3)-(6.4) that

Yisvn — B [YaronlFin] = —Zn AW r1yn — Zin AN 1)

But this entails that we can obtain E [Y(i+1)h|]:,-h] , —Z;n and —Z;, as the argmin of the
minimization problem

~ 2
min E |:<Y(z‘+1)h — ain — bin AW 1) — CihAN(i+1)h> |]:ih] ; (6.5)

@in,bin,Cin
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with the minimum attained in a}), := E [Ylﬂ)h]]-}h] by, == —Z;n, and ¢y == — ~ih.
Since all the quantities involved are JF;; measurable and the problem is Markov, there exist
functions A, B,C : R? — R such that A(W;, Ny,) = E [Y(i+1)h‘Fih] , B(Win, Nip,) := —Z;p, and

C(Win, Nip) = —Z;n. We fix K € N and assume that there exists constants @y s s b]p]g 51’52 €

R such that E [V(;41) hlfzh} ~ Eﬁ 0,ja=0 Wir.je Wi Nip» —Zin = foo 75=0 inuéWJlszff’ and

Zin & Zﬁ 0.72=0 Gy Jszjﬁ Nf;f Then (6.5) suggests to calculate the desired approximations
to E [Y(z‘+1 h,|]:zh] . Zin and Zy, given our simulated paths and ;41 %, using the following
algorithm:

M K K
i . — a1 2 o 91
w Ifr}H} E : <y(l+1)7k E : g1, Wy 1 T — E : b]i,Jé[ ik, kAwH-l k]
T2 T2 =g 71=0,j2=0 71=0,j5=0
K 2
_ S J1
§ : 1,52 [wz £ k(I{An(zH) x=0} — hﬂ) ' (6'6)
J1=0,j2=0

Note that this is a linear least squares regression in the 3(K + 1)? constants aj, j,, bjr it s €y o
(Of course, other choices of basis functions and other types of regressions are also possible.)

Denote the constants that attain the minimum in (6. 6) by a*,b*, ¢* and set E [Y(z+1 h\}}h] A

K * _\K * 1, J2 _\K * J1, J2
> =00 T iy W s Zit & Zj1=0,32—0byi,angk"zk’andZmN 2 51=02=0 G, jo Wik Vi

Finally, by (6.4), one can then calculate y; ; by

K K K

R * J1,.J2 _2: * 1112_2: 77]1]2
Yik = Z ajh]éwz knzk f<Zh’ b]iv]éwl K"V ko CJl J2wz k" k> h. (67)

Jj1=0,j2=0 J1=0,55=0 j1=0,52=0

In the particular case of a Markovian setting, such as that considered in this section, one
may also employ a finite difference method based on the corresponding PIDE, adopting e.g.,
the method and results of Barles, Buckdahn and Pardoux [4]. Because in full generality our
setting does not require a Markovian structure, we have primarily focussed attention on the
Monte Carlo results for illustration purposes.

6.3 Numerical Results: Verification, Misspecification and Stability

We show numerical results for various special cases of Subsection 6.1. We consider a European
put option with strike price 2 and time-to-maturity of 0.5 years and Sy = exp(—bT"). We take
b=10.04, 0 =02, a=1, 8 =0.03, mypper = 10 and Tower = 0. The number of Monte Carlo
simulations is 10,000. Table 1 displays Yy as a function of v. We consider subsequently the
cases of (i) no ambiguity (A = d4 = d_ = 0), no hedge; (ii) no ambiguity (A = d4 = d_ = 0),
with hedge; (iii) Brownian ambiguity only (A = 0.05, dy = d— = 0), with hedge; (iv) jump
ambiguity only (A = 0, dy = 0.5, d— = —0.25), with hedge; (v) both Brownian ambiguity
and jump ambiguity (A = 0.05, d+ = 0.5, d— = —0.25), with hedge. In the limit, as =
tends to infinity, the risk averse y-exponential utility maximizer becomes risk neutral: (vi) no
ambiguity (A = dy = d_ = 0), risk neutrality (asymptote v = 00), no hedge; (vii) no ambiguity
(A =dy = d_ = 0), risk neutrality (asymptote v = c0), with hedge. The table shows clearly
(verifies) that risk aversion and ambiguity aversion decrease the evaluation, and that hedging
opportunities increase the evaluation.
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Table 1: Numerical Results
v |1 4.5 14 325 63 1085 ~y | 1 4.5 14 325 63 1085

PR
=
~

0.965 0.973 0975 0975 0.975 0.975 (vi) | 0976 0.976 0.976 0.976 0.976 0.976
1.080 1.116 1.156 1.167 1.171 1.173 (vii) | 1.173 1173 1.173 1.173 1.173 1.173
1.074 1.097 1.130 1.141 1.145 1.147 || (vii) | 1.055 1.077 1.110 1.121 1.125 1.127
1.062 1.087 1.122 1.132 1.136 1.138 (ix) | 0.964 0.972 0974 0974 0.974 0.975
1.069 1.073 1.097 1.108 1.113 1.114

—_~
(DR
2 EE
=t
—_

—~
<
~

In the absence of ambiguity, as in Becherer [5], now suppose that the agent misspecifies the
drift b (of which we know it cannot be estimated even consistently in finite time). In particular,
suppose that the true b is 1% smaller (3%) than what the agent accounts for (4%). Then, upon
comparing (viii) no ambiguity (A = d4 = d— = 0), with hedge and misspecification; and (ii),
we observe that Yj is (already) affected by about 3 to 5% (depending on +), on a short time
horizon. (Y decreases because the hedge becomes less attractive when the drift decreases.) By
contrast, the ambiguity averse agent takes the uncertainty regarding b already into account.
His evaluation is mildly (or even hardly) affected by about -1 to 2%, as we see from Table 1,
(iii)-(v). Thus, we conclude that no-ambiguity models are sensitive to the restrictive underlying
assumption of a known distribution: purely risk-based models are prone to model uncertainty
and taking model uncertainty into account provides a more robust evaluation.

As a verification of numerical stability, we have cross checked our results obtained by
Monte Carlo least squares regression with results obtained by the specific simple random walk
based approximation method of Lejay, Mordecki and Torres [58], which corresponds to a finite
difference approximation based on the associated PIDE as in Barles, Buckdahn and Pardoux [4].
Table 1, (ix) shows the corresponding results for the case of no ambiguity (A = dy = d_ = 0),
no hedge. These results turn out to agree almost exactly with the Monte Carlo least squares
regression results in (i), as desired. As a second verification of numerical stability, we have
also increased the number of simulations to 2 x 10,000. We find that this occasionally leads
to only slight variations in the third decimals of the results in Table 1. We conclude that the
obtained results are numerically stable. A full-fledged convergence analysis is, however, beyond
the scope of the current paper.

A Appendix

A.1 Preliminaries

Let X be a Banach space and denote by X'* the topological dual of X'. For a convex function
f X = RU{oo}, we define its subgradient as df(x) = {z* € X*|f(y) — f(x) > z*(y) —
x*(x) for all y € X}. If the function has several arguments, then the subdifferential should be
taken with respect to the components in which the function is convex. For example, if f(t,x) is
convex in z, then we define 0f(t,z) = {z* € X*|f(t,y)— f(t,z) > x*(y—x) for all y € X'}. We
say that a function f(z) is subdifferentiable if its subgradient is nonempty for every x. For a
convex function f : X — RU{oo} not identical infinity, we denote by f*(z*) = sup,cr{z*(z) —
f(z)} the dual conjugate of f mapping from X* to RU{oco}. Again, if the function has several
arguments, the dual conjugate should be taken with respect to the components in which the
function is convex. The next result can be found in Zalinescu [86], Theorem 2.4.2(iii).

Proposition A.1 Let f: X — RU{oo} be a convexr function with a nonempty domain. Then
for every x € X* and xg € X, the following statements are equivalent:
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(i) xo € Of*(x);
(i) x5 € Of (xo);
(i) f(x0) = maxy-cx-{z*(x0) — f* (")} = aj(w0) — f*(5);
(w) f*(x5) = maxzex{zg(x) — f(2)} = x5(x0) — f(2o)-
Let us recall some definitions:

Definition A.2 A predictable process H : [0,T]xQ — R is called locally integrable if fOT |H|%ds
<0 a.s. AP®B(R\{0})-measurable function H : [0,T] x Q x R\ {0} = R is called locally
integrable if fOT f[—Ll}\{O} |Hy(z)|*np,(dx)ds < oo and fOT fR\[—Ll} |Hs(x)|np(dz)ds < 0o a.s.

Definition A.3 We call a martingale M a BMO(P) if there exists a constant ¢ > 0 such that
E[(M)p — (M), |Fs] <e¢, |AM,|*> <c for all stopping times o.

Furthermore, we call Z : [0, T] x Q — R a BMO(P) process if Z is predictable and there exists
a constant C > 0 such that for every stopping time o we have E U"T ]Z5]2ds|.7:0] < C. We
call Z - [0,T] x Q@ x R\ {0} = R a BMO(P) function if Z is P ® B(R \ {0})-measurable,

bounded, and there exists a constant C' > 0 such that for every stopping time o we have

B[S fo oy 1Z5(2) Py (d)ds| 7, ] < C.

If Z and Z are in L*(dP x ds) and L?(dP x n,(dz) x ds), respectively, then M; = fot ZsdWs +
fot fR\{O} Zs(x)N(ds,dz) is a square-integrable martingale. Furthermore, if Z is a BMO(P)
processes and Z is a BMO(P) function, then M is a BMO(P) martingale. We need the
following result, also known as Kazamaki’s [53] criterion.

Theorem A.4 If M is a BMO(P) and there exists a 6 > 0 such that AM > —1+ § then
the stochastic exponential of M, E(M;), is a uniformly integrable martingale. Furthermore,
E(Mrp) > 0.

Remark A.5 If f is real-valued and convex (in some of its components), then many of the
‘usual’” rules of differentiation apply for its subgradient; see, specifically, Theorem 2.4.2, (vi)-
(viii) in Zalinescu [86].

Define . .
(qg- W) := / qsdWs and  (Z-N,); := / / Zs(x)Ny(ds, dz).
0 0 JR\{0}

Furthermore, we write ®(z) := exp{z} — 2 — 1 > 0 and ®(z) := exp{|z|} — |z| — 1 for z € R.
Define also ¥(z) := ®*(z) = (1 + x)log(l + z) — 2 > 0 for # > —1 and infinity else. Set
U(z) = &*(z) = (1 + |z|)log(1 + |z|) — |z|. The Fenchel dual inequality implies that for all
z,y €R,

zy < U(z)+®(y), and xy < U(z)+ O(y). (A1)

We will also need the notion of an Orlicz heart.
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Definition A.6 The Orlicz heart Mé(np) corresponding to ® is the Banach space of all func-
tions Z € L%(ny) such that for every a > 0, fR\{o} ®(az(x))ny(dr) < oo.

Remark A.7 It holds that L?(n,) N L>®(n,) C Mé(np) C L?*(np). Furthermore, L?(n,) N
L>(n,) is dense in M®(n,); see Rao and Ren [74].

Remark A.8 The dual of M&)(np) is L‘i’(np); see Rao and Ren [74]. In particular, a function
f:L¥(n,) — M®(n,) is weak* lower semi-continuous if for all z,, converging o(L¥ (n,), M®(n,))-
weakly to = we have that f(z) < liminf, f(x,).

A.2 Proofs

Lemma A.9 Suppose that Q@ = AQ1 + (1 — N\)Q2 with A € [0,1]. Then it holds that Z—g =
E((a-W)r+ (- Ny)r) with (q,1) = Mar, 1) + (1 = Mgz v2) and A = 55208455

Proof. Fori = 1,2 denote D;; :=E [Cil%' \}"t} . For afixed A € [0, 1] denote D := AD;+(1—\)Ds.
We write

dD;
= >\D1,t [thth + / Ibl,t(%)Np(dt, diU)] + (1 - )\)D27t [Q2,tth + / 1/127t(11)]\~[p(dt, daz)]
R\{0} R\{0}
— [AD14 AD1y
=D —— 11— —— d
t{ D, qe + ( D, )q2,:dW

+ /R\{o} (M_)l,t drp(z) + (1 - )\gjt)wzt(x))]{fp(dt, dx)}

- Dt{(Ath + (1= Mo )dW; + /\{ } (N (@) + (1= Ntbaa(a)) Ny, da:)}, (A.2)
R\{0
with \ = Agi’t = 37, ti(,il—’tA)Dg -. Therefore,

d(AQ1 + (1 —2)Q2)
dP

= Dr = &{((\ar + (1= Xga) - W)z + (Whr + (1= i) - Ny)r .
|

Proof of Theorem 3.1. For the equivalence of (i) and (ii), see, for instance, Cheridito and
Kupper [18]. This relationship is, in fact, true in full generality in every dynamic setting. The
part (iii) = (ii) for a general measure n, is straightforward to see. In the case that there are
only finitely many markers, (iii) <= (ii) follows from Theorem 4.2 and Remark 4.2 in Tang and
Wei [84]. That (3.3) then also holds for a general measure n,, for all Q € A := U | A, with
A, ={Q < Pllgs| <n,(=1+1/n)(1 A |z|) < [s(x)] < n(LA|z]), fords x ny(dz) all s, z},
follows from Theorem 4.1 in Tang and Wei [84].

So, let us show that for a general n, we have that, if the domain of the penalty function
¢ has a nonempty interior relative to Q, then under time-consistency (or Bellman’s principle)
(3.3) must even hold for all @ € B := {Q < Plps € L*(np), ¢s(z) > —(1 A |z|) for ds x
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np(dz)-a.s. all s,z}. From Theorem 4.1 in Tang and Wei [84] we find that there exists a
convex and lower semi-continuous function 7 (s, g, %) such that for every @ < P we have

a(Q) < Eg {/tTr(s,qs,ws)ds] . (A.3)

Furthermore, we have already seen that equality in (A.3) holds for every @Q € A. Fix a @ € B.
Clearly, ‘>’ holds if @ ¢ dom(c). Thus, what is left to prove, is that ‘>’ holds in (A.3) for
@ € dom(c)N B. Assume next that @ € ri(dom(c)) N B with corresponding (g, ). Then clearly
there exists a sequence (¢",%") € dom(c) N A with corresponding measures Q", such that (a):
q" converges to ¢ dP X ds-a.s.; (b): for dP x dt-a.s. all t and w, ¥]'(w) converges to 1;(w) in
L%(ny); and (c): Q™ converges to @ in the norm of the Banach space. This yields

(@) = lma(Q")
T
=limE gy, Yid
o | [ rlsuat )iy
T T
> Eq [/ liminfr(s,q?,w?)ds] > Eq [/ r(s,qs,ws)ds] , (A4)
t n t

where we used the assumption that ¢ is continuous on its relative interior in the first equality.
The first inequality holds by the lemma of Fatou since r must be non-negative as ¢ is non-
negative. The last inequality holds since r is lower semi-continuous.

Finally, let us consider the case that @ € dom(c)NB\ri(dom(c)). Choose Qg € ri(dom(c))N
A. Then for every n € N we have that Q" := 1Qo+ (1= 2)Q € ri(dom(c)) N B. Furthermore,
by Lemma A.9 ((j",qﬁ") is a convex combination of (go, ) and (g,%), and ¢" converges to ¢
dP x ds-a.s., and for dP x ds-a.s. all t and w }*(w) converges to 9 (w) in L?(n,). From the
previous step we already know that (A.3) holds with equality for every Q” Now we can replace
in (A.4) Q™ with Q", and (¢",vy™) with the corresponding (¢", 1&") To see that the first equality
in (A.4) holds, consider the function h(s) := ¢:(sQo + (1 — s)@Q) mapping from R to R U {oo}.
Clearly, h is finite on [0, 1] and, since h is also convex and lower semi-continuous by Proposition
2.1.6 in [86] h is continuous on the closure of its domain. Therefore the first equality in (A.4)
still holds for @™ replaced by Q" By construction of our sequence, the other equalities and
inequalities also hold. Therefore, we obtain ‘>’ in (A.3) also for € (dom(c) N B) \ri(dom(c)).
This completes the proof of the theorem. a

Lemma A.10 Equation (3.6) holds.

Proof. By definition Uy (F') = ming«p Eq [u(F) + ftT (s, s, ¢S)ds‘]-'t] , where 7 is defined by

T(s,q,¢):{ 0, if (¢.%)€ ({(qi,s,wj,s)yz',j = {1,...,L}});

oo, otherwise.

We need to show that

T T
&%EQ [u(F) +/t f(s,qs,ws)ds’}'t} = &I}DEQ [u(F) +/t T(s,qs,qﬁs)ds’ft} ., (A.5)
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with 7 given by

(5 4.0) :{ 0, i (q,1) € conv({(ais vys)lisg € {1, L}}):

oo, otherwise.

We may assume without loss of generality that r(s,0,0) = 0. Now clearly ‘>’ in (A.5) holds,
while ‘<’ follows from Lemma A.30b) below (with (Y, Z,2) = (Y',Z',Z’) and g as in Example
4.2(4)). O

To prove Theorem 4.1 we need the following inequalities:

Lemma A.11 The following inequalities hold for all C,a, X\ > 0:

T x x? C
\V_Z < = _ . )
exp{a} 5 1 < a2exp{a}, forall z€[-C,CJ; (A.6)
22 < 2a%ef/e [exp {g} - g — 1} , forall ze€[-C,C]; (A7)
le?/A —1] < ec/)‘kﬂj forall z € (—o0,C]. (A.8)

Proof. As €“/® > 1, the first inequality can be seen from the sum expansion of the LHS
(left-hand side) for ‘2—' < 1. For % > 1, one easily verifies that already exp{C/a} is an
upper bound for the LHS in the first inequality. The second inequality for x > 0 can also
be seen from the sum expansion of the RHS. For z < 0, one can compare the derivatives
of the functions fi(z) = z? and fo(x) = ZQQeC/O‘[eXp{%} — 2 —1]. Then f{(z) = 2z and
f5(x) = 20e%/*(exp{£} — 1). Now f](0) = 0 = f4(0) and f{(—C) > f5(—C). As f} is convex
and f] is linear this entails that f](z) > f4(z) for all z € [-C,0]. Therefore, for z € [-C, 0],
fi(z) = — f:? fy)dy < — fa? 15(y)dy = fa(z). This shows (A.7) for z € [-C,0]. Finally, to see
(A.8), define fi(x) := |e*/* —1] and fo(x) := eC/)‘%. Then f1(0) = 0 = f5(0). Furthermore, for
z € (0,C], we have f(z) = ez)fA < @ = fi(x). For # < 0, fi(z) = —ez)fA > —% = fi(x).
From these inequalities (A.8) follows. O

Corollary A.12 Suppose that K is in L>> (see Section 2) and is bounded. Then

< 00,

sup | o M)

< Q.
t

o =
‘sup /]R\{O}(I) (K¢(x))np(de)

o0

Proof. The first statement follows immediately from (A.6) and the definition of L?**. Further-
more, if K is bounded by a constant, say C, then (A.6) and the fact that ®(z) > 0 yields

DY(Ki(x)) < K}Hx)exp{2C} < K2(z)C% exp{2C}.

As K € L%, the second statement follows. ]

For a driver function g(t, z, Z) of a BSDE with jumps, the following properties play an important
role, while proving Theorem 4.1:
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(a) 0<g, and g(¢,0,0) = 0 for all ¢.

(b) There exist K, Ko > 0 such that for all ¢ € [0,7], all z € R*? and all Z € M‘i(np) we
have

g(t, 2, %) < K(1+ |22) + Fy /R\{O} <eXp {3((52)} - 2((? - 1) ny(dz).

(c) (i) For every t, and (z,2) € R? x (M‘i)(np) N L*>(ny)) we have that g(t,z, Z) is con-
vex and subdifferentiable (in the space R? x M®(n,)). We also write dg(t, z,2) =
(0,9(t,z,2),0:9(t, 2, Z)) to distinguish the different components of the subgradient

(ii) ¢ has a modification such that for every z,Z the mapping (t,w) — ¢g(t,w,z, 2) is
predictable.

(d) For every C > 0, there exists a BMO(P) process, H, and a constant K1 > 0 such that
for every t, z, w, and all Z € M®(n,) bounded by C we have that

la| < Hi(w) + Kilz|, for all g € d.9(t,w, 2, 2).

(e) For every C > 0, there exists a BMO(P) function H and Ky,e > 0 such that for every
t,w, 2, and all Z € M®(n,) bounded by C, we have

] < Hy(w) + Ks|z|, and (=1+c¢€) <1, for every ¢ € 9:g(t,w, 2, 2).

We will see later that assumption (a) may be relaxed and assumption (b) may be replaced by

(b’) For every C' > 0, there exists K” > 0 such that for all ¢, all z, and all Z € M‘i’(np)
bounded by C' we have

g(t,z,z2) < K" (1 + |22 +/R |2(:c)|2np(da:)> : (A.9)

\{0}

Remark A.13 Note that assumptions (b’), (d), and (e) are generalizations of Kobylanski’s
[55] quadratic growth conditions to a setting with infinite activity jumps.

Remark A.14 In case that n, is finite, the boundedness of Z by a fixed constant also implies
the boundedness of fR\ (0} |Z(z)[*np(dz). Therefore, in this case in order for (b’) to hold it is

sufficient that for all Z bounded by C' we have that g(t,2,2) < K"(1 + |2]?), where K" may
depend on C.

Remark A.15 Conditions (b’)-(c) may be assumed to always hold in the case that n,, is finite
and g is of the form

Gt 2, 5) = g(t, 2) + /R 1y Gt ), (A.10)

for g1 : [0, T]x Q@ x R? — R being convex in z and satisfying quadratic growth conditions and a
jointly continuous, convex function Go : [0,7] x R — R{". This may be seen as Z arising in our
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BSDESs will always be bounded by a constant depending on the terminal conditions. Therefore,
G2 may be modified outside a compact set which can be fixed throughout the paper, implying
that condition (b) holds. Clearly, g is then also finite valued on R% x L>(n,) and condition (c)
holds.

The case of a finite n, and g having the structure given in (A.10) was also considered in
Becherer [5].

Lemma A.16 Under the assumptions (H1)-(H3), g defined in (4.2) satisfies (a)-(e).

Proof. (a): By (4.2), ¢g(¢,0,0) = —infqeRd’weLg,(np)r(t,q, 1) = 0, where the last equality
is satisfied by (H1). As 0 € 0r(t,0,0), by Proposition A.1 we get that 0 € 9g(t,0,0). In
particular, the convex function g¢(t, -, -) for every ¢ has its global minimum in (0,0). It follows
that g > 0.

(b): We write

g(t,z,5) = sup  {zq+Z-¢—r(t,q,)}
g€R® YeLY (np)

< K+ sup {zq +2-9— Ko (|q!2 =+ / \I/(w(x))np(dac)> }
qeR? peL¥ (n,) R\{0}
2
<k 4+ 2y [ suplete)y - Kav(o)ny (i)
2K>  Jr\{0} yeR

i Z(z)
2K2 +/R\{0}‘I’(K2)"p(dw)] ,

where we used (H2) in the first inequality.
(c)(i): Clearly, g(t,-,-) is convex. By (b), it also is a real-valued function. By Theorem
2.2.20 and Theorem 2.4.12 in Zalinescu [86] this implies that for every ¢, g(¢, -, ) is continuous

=K+ Ky

and subdifferentiable even on the entire space M®(n,).

(c)(ii): As g(t,-, ) is subdifferentiable this follows from a measurable selection theorem, see
for instance Aumann [3].

(d): By Proposition A.1, we have for ¢,w, z and Z that (q,v) € dg(t,w, z, Z) if and only if
(z,%) € Or(t,w, q,1). Therefore, (H3) yields |z| > —K) + K»|q|. Thus, indeed |q| < K} + %

(e): For t,w, and Z bounded by C, choose (¢, %) with (¢,¢) € 0g(t,w, z, Z). By Proposition
A.1, we have then that (z,2) € 0r(t,w, q,). Therefore, (H3) yields

2| > —K + K| log(1 + ¢)|.

Now as K is uniformly bounded by a constant, say C, we must have that t is uniformly
bounded, and bounded away uniformly from 0. It follows that

K3 K3
where we applied (A.8) in the second inequality. This shows (e). O
Remark A.17 Actually we have even proved that if (H1)-(H3) holds, g(t,-,-) is continuous

on (R% x M®(ny), [+ | X || o, )
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Lemma A.18 Suppose that we start with a function g(t, z, Z) and denote by r the correspond-
ing dual conjugate, i.e., for t € [0,T] we set

r(tq, ) = sip  {zq+2-0—g(t,z3)}, forgeRY, v eL¥(ny).
2€R1Xd e M® (n,)

Then property (b) implies that there exist constants K1, Ko, K3 > 0 such that for all t, all g,
and all 1 € LY (n,) we have

Pt g 0) > — Ky + Kalgl2 + K /R o, VD)

Proof. The lemma can be proved similarly as Lemma A.16, (b). O

From the definition of variational preferences in (2.3), with u = id, and (H1) we get

T
Ui(F') = essinf {EQ [F +/ r(s,qs,ws)ds‘]-}]
t

Q<< P}, (A.11)

which is the object under consideration in Theorem 4.1. For a measure () < P, let D; =
E [%m] and 7 = inf{t € [0,T])|D; = 0} A T.

Lemma A.19 For T >t > 7 we have that Dy = 0. Furthermore, if 7™ = inf{t > 0|D;— =
0} AT then T =T1*.

Proof. From the martingale stopping theorem for 17" > ¢,
E [DtI{tZT} + DtI{t<7—}] =E [Dt] =1=E [Dt/\T] =E [Dtl{t<—r}] .

Thus, E [DtI {tZT}] = 0. As D is non-negative, the first part of the lemma follows. To see the
second part note that the only possibility for 7 £ 7* is that, for fixed w, the left-hand limit of the
process D is zero at a time instance t, but D jumps (upwards) so that D;— = 0 < D;. In other
words, for the increasing sequence of stopping times 7, := inf{t > 0|D; € (1/m,0)} A\ (T'—1/m)
we have that D jumps at 7/ := lim,, 75,,. However, as 7/ > 7,,,, 7’ is a predictable stopping time,
see Ch. IIT in Protter [73]. As the jumps of D are totally inaccessible, since they are induced
by a (inhomogeneous) Poisson random measure, 7’ a.s. cannot coincide with a jump time. O

The next two lemmas are the analogues of Lemma 2.1 and Proposition 2.1 in Delbaen, Hu and
Bao [24]. They are proved there in a Brownian setting but the proofs also hold in our setting
with obvious modifications:

Lemma A.20 Suppose that (H1) holds. Then for any stopping time o and F € L*(Fr),

Uy (F') = essinf {EQ [F—F /Tr(s,qs,ws)ds‘]-}]

0-r}

where QQ ~ P means that QQ and P are equivalent in the sense that they share the same zero
sets.

Lemma A.21 Suppose that (H1) holds. Then for any F € L (Fr) the process Uy (F') defined
by (A.11) has the following properties:
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(1) For all Q < P we have that U(F') + fT/\t (s,qs,%s)ds is a Q-submartingale.

(2) If there is a probability measure @ < P with
UO(F) = EQ |:F+/ T(£aQsa¢S)d5:| P
0

then Uy (F fT/\t (s,qs,%s)ds is a Q-martingale.

As r is non-negative and r(t,0,0) = 0, clearly, for any m € R and for any ¢, we have U;(m) = m.
Furthermore, U is monotone in the sense that F' < G implies that U;(F) < Uy(G). Therefore,
for any F' € L>°(Fr) we have that |Uy(F)| < ||F||co. Thus, we can apply the Doob-Meyer
decomposition theorem to obtain that there exists a unique predictable increasing process A;
with Ag = 0 and a local martingale M; with My = 0 such that

Uy(F) = Up(F) + Ay — M. (A.12)

For k > 0, set C, = {Q < P|Eg [fOT r(s, qs,ws)ds} < k}. Now (H2) entails that for every fixed
k there is a constant C' > 0 such that for every Q € Cy,

T
/ (lqsl2ds+ / \P(ws(x))np(dx)) ds
0 R\{0}

with ¥U(z) = (1 + z)log(1l + z) — = for « > —1. Denote N]?(dt,dac) = N,(dt,dz) — (1 +
Y(x))np(dx)dt. By Jacod and Shiryaev [49], Ch. 3, Th. 3.11 and Lemma 3.14 integrals of
bounded locally integrable functionals with respect to NE (dt, dx) give rise to local martingales
with respect to ). The next lemma shows that the local martingale in (A.12) is in fact a

BMO(P) martingale. It prepares Theorem A.29, which is a key result for the proof of Theorem
4.1.

Eq <C, (A.13)

Lemma A.22 Assume that the process J is a semi-martingale, bounded by a constant C, with
Doob-Meyer decomposition J = Jo+ A — M and A is increasing or decreasing. Then there
exist a BMO(P) process Z and a BMO(P) function Z such that

/ ZsdW +/ /R\{O} p(ds,dx). (A.14)

Furthermore, for every k € N and Q € Cy, we have that Z € L*(dQ x ds) and Z e L2(dQ x
ng(s, dx) x ds).

Proof. We only prove the lemma for A increasing. The case that A is decreasing follows
by considering —J. By the (local) martingale representation theorem, there exist predictable
processes Z and Z such that M; = (Z - W); + (Z - N,);. Note that the jumps of M are all
totally inaccessible. Since A is predictable, a jump of M cannot coincide with a jump of A. As
the jumps of J are uniformly bounded (since J is uniformly bounded), the jumps of M must
be uniformly bounded too. In particular, M is locally square-integrable. This implies that we
may choose Z and Z in (A.14) such that

T
P[/ ]Zs|2ds<oo}:1 and P
0

T
/ / \Zs(w)|2np(dx)ds <oo| =1.
0o JR\{0}
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Since M cannot have a jump greater than 2||.J||g= we also have that |Z| < 2C.
We first start our analysis for general Q € C with corresponding ¢ and . (Note that this
includes the case that @ = P, since then ¢ = ¢ = 0.) For every m € N, define

t t
Om = inf {t > 0| / / |Zs|*ds > m and / / |\ Z(x)[Pny(dx)ds > m}.
0 JR\{0} 0 JR\{0}

Then 0, — 0o P-a.s. and therefore also Q-a.s. as m tends to infinity. Clearly, (Z - W) ino,,
is a square-integrable Q-martingale. That (Z- N?);x,,, is a square-integrable Q-martingale as
well, may be seen from:

[/ o /R\{O} (@) (5. da)ds }
/T”’m /R\{O} 2(1 4 s (a ))np(dz:)ds]
[ /R\{O} PR >np<d$>ds]
. /OT/\crm /R\{O} [@(|Zs(x) ) + W(¢S(x))]np(dx)d81
[ [ wizePe

TNANom ) N 4
/ / exp(4]|7|[200) | Za ()] ds
0 R\{0}

TNAoOm _
< m+ C + 4] |2 exp(d]|J] 2 )Eq [ / |zs<x>\2ds]

<m+Eqg

<m+E

<m+C+Eq

<m+C+Eq

< m+ C + 4|J||Ze exp(4]|J||Zoc )m

with ®(z) = e* — & — 1. In the first inequality, we used the definition of o,,. In the second
inequality, we applied (A.1). In the third inequality, we used (A.13). In the fourth inequality,
we used (A.6) and that |Z|? is bounded by 4]|.J||%«. In the fifth inequality, we applied again
that | Z|? is bounded by 4| J||3«. In the last inequality, we used the definition of o,,. It follows
that indeed (Z N@ )tro,, 1S a square-integrable -martingale. Therefore,

M = —/ Zyqsds — //R\{O} (z)ny(dx)ds = (Z - W®); + (Z - N9),

is a locally square-integrable martingale with local stopping times o,. Next, choose C' as in
Lemma A.24 below (with A = 2||J||g). Note that, by (A.1),

—uwite) = -0 (075 2 ovutan - co (2)). (A.15)
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Now, by [t0’s generalized formula, for any stopping times o and o, we have that Q-a.s.

TNAom

TNAom
exp(Jrac,,) = exp(Jono,,) — / exp(Js—)dMs + / exp(Js—)dAs
ONOm ONOm
TNOm 1 - ~
+ / exp(Js-) (5122 + / (exp{~Zs(x)} = 1+ Zy(a))my(da) ) ds
ONOm 2 R\{0}
TNANOm TNom
= exp(Jorom) — / exp(J,_)dME +/ exp(Js—)dAs
OoNOm ONOm

- U exp( ) (S22 - [ Z@@mlin)

Nom, R\{O}

+ / (exp{—Zs(z)} — 1 —i—Zs(x))np(dm))ds. (A.16)
R\{0}
Taking conditional expectations on both sides in (A.16) yields

Eq [exp(JT )| Forom]

= exp(Jonom) + EQ [/

TNOm TNANom

exp(Js— )dAs —i—/

oNOm

1
exp(Js—) <§|Zs|2 - quS

NOm

+ /R \{0}[—Zs(x)ws(x) n @(—Zs(x))]np(dac))ds fmm]. (A.17)

As J is bounded by C, (A.17) entails that

Eq [exXP(JT A0 ) [ Fonom)]

> exp(—C) + Eq [e_é (AT/\am - AU/\Um)

NOm,

TAom 1 . ~
[ ep) (2P AP+ [ S Zue)un(e) + @(-Zu(w)m(do) ) ds fmm]
o R\{0}
~ c Thom =€ Cp, 12
> exp(—C) + Eq [e— (A7n0 = Aonon ) + / (120 = 4e%a,

NOm

s /R - { —CU(s(x)) — CB(Zs(x)/C) + @(—Zs(x))}n,,(dx))ds f(,A(,m]
> exp(—é’) + Eq [6_0 (AT/\Jm — Avom) + /;::Gm (T’ZJQ - 460|Qs‘2
+ /R\{O} [ - Ceé\IJ(ws(x)) + Be_é|ZS(x)|2]np(dx)>d8 nggm], (A.18)

where B > 0 in the last inequality stems from Lemma A.24. In the first inequality, we used
lab| < 4a®+ % for the term ¢sZ5. The second inequality holds by (A.15). In the last inequality,
we applied Lemma A.24 and the fact that Z is bounded by 2||.J||s. Now to see that Z is a
BMO(P) process, note that for @Q = P, we have that ¢ = ¢ = 0. (A.18) implies then that there
exist a constant €’ > 0 only depending on C and B, such that for every stopping time o and
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Om,

TNANOm B
E | Arpo,, — Aopo,, + / (|zs|2 + / |Zs(:c)]2np(dx))ds Fornon | <C. (A19)
TAOm R\{0}
Choosing 0 = 0 and letting m converge to infinity yields
T ~
E|Ar +/ (122 + / 1Zy(@) Py (da) ) ds| < C, (A.20)
0 R\{0}

where we used the monotone convergence theorem. (Recall that Ag = 0.) Now (A.20) implies
that Z € L?(dP x ds) and Z € L?(dP x ny(dz) x ds). Therefore, M is a true martingale and
we may choose o, = T. But then (A.19) yields that

Ar—a,+ |

As Ap — A, > 0 (since A is increasing), it follows that Z is a BMO(P) process and Z is a
BMO(P) function.

For the second part of the lemma, let @ € Cf. It follows from (A.13) and (A.18) with o =0
that there exists a constant C' such that for every O,

T

E <.

Fo

(126 + [ Vo Pmataa))ds

Eg <C. (A.21)

TNOm B
Arroy+ [ (124 [ (Zuda) Py ) s
0 R\{0}

Letting m converge to infinity and using the monotone convergence theorem (A.21) yields

Ar + /O ' (!Zs|2+ /R \{O}\Zs@)!?np(da:))ds] <C.

This shows that A7 € L'(Q), Z € L*(dQ x ds) and Z € L*(dQ x ny(dz) x ds). What is left to
show is that Z € L?(dQ x (141s(z))n,(dz) x ds). First of all note that clearly 21 < 4[| J]|%00 2
for all z € R with |z| < 2||J||se. Hence, by (A.1) and (A.6),
|Zs(2) s (2) < (1 Zs()]?) + W (vs(2)
< exp{4l|J|[§e HZs(@)[* + W (s (2))
= 4[| |[5oe exp{d]|J|[3o }H Zs(2)* + T(0s(2)). (A.22)

Eq

Now we have already shown that |Zs(z)|?> € L'(dQ x n,(dz) x ds). On the other hand,
U(ps(z)) € LY(dQ x ny(dr) x ds) because of (A.13). Therefore, it follows from (A.22) that

| Zg(x) (1 4+ vs(x)) € L*(dQ x ny(dx) x ds), so that indeed Z € L?(dQ x ng(s,d:n) x ds). O

Remark A.23 Suppose that J = Jy+A— M, where, rather than assuming that A is increasing,
we assume that there exists a constant b such that A; + bt is increasing. This would be the
case if A is given as the integral of a driver function bounded from below. In this case the
conclusions of Lemma A.22 still hold. This can be seen by defining, J; := Jy + A; + bt — M.
Then A; + bt, the predictable part of .J, is increasing. As J is bounded, we can apply Lemma
A.22 to J in order to obtain the integrability results on Z and Z.
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Lemma A.24 Let A > 0. There exist C, B > 0 such that for all x € [ A, A],
O(—z) — CD (%) > Blz|?.

Proof. By (A.6)-(A.7),

B(—z) — CP (%) > <22A - éexp {g}) 2.

If we choose C large enough, then B := exp{ } > 0. O

Proposition A.25 For every Q < P we have that

H(Q|P) (A.23)

- ) 1 i - x)|nylax S
=Eq /0 (2\qs! +/R\{O}[(1+ws(x))log(1—i—zps(;g)) s(@)]np(d ))d

Proof. As both sides are non-negative, it is sufficient to prove (A.23) if either the left- or the
right-hand side is finite. First of all assume that we have @) such that H(Q|P) < co. If Q is
equivalent to P, (A.23) corresponds to Proposition 9.10 in Cont and Tankov [19]. If @ is not
equivalent to P, let 0 < A < 1 and define Q* = AQ + (1 — A\)P. It is not hard to see using

the dominated convergence theorem that H(Q P) "= = H(Q|P). On the other hand, a similar
argument as in (3.2) yields that the density process of @* is equal to £((¢* - W) + (¥ - Np)y)
with

A ADqqy

ADyy
qt

- - A -
=Dt (1w tsn and = ap Ry e

Clearly, for every w and s, (g2 (w))x and (¥ (w))x are increasing (decreasing) in A € [0,1] on
their respective positive (negative) parts. Furthermore, they converge to ¢s and 15, respectively,
as A tends to one. Therefore, indeed

H@P) = lim H@Q\P)

/OT (%mg I+ /R\ o \P(wﬁ(x))np(dx))ds]
= Eq [ /0T< P /R \{O}W(q/)s(x))np(d:c))d(g]’

where we applied the monotone convergence theorem in the last equality.
Next, suppose that we have a @ with corresponding (g,v) such that the RHS in (A.23)
is finite. Now clearly ¥ s(x) = 1s(2) Iy, @)y<mtL{z|>1/m} (¥) is in L*(dQ X n®(s,dz) x ds).

= lmE
19
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Taking the logarithm of the Radon-Nikodym derivative yields that @Q-a.s.

40 T T ~
log () = lim log {5 / qsdWs + / / VYim,s(2) Np(ds, dx))}
apr m 0 R\{O}
m 0 R\{0}

z)N,
/ / log 1+¢ms( )) @ijs d5 dZU }
R\{0}

= lim {/ gsdWE + / f\qs %ds —l—/ / Ym,s(T (ds dx)
m 0 R\{0}

T
(0] m.s(T)) — Vm.s(X V& s, dx
+/ /]R\{O}(l (1 + Pms(x)) = Y s(2)) N (ds, dz)

»(ds, dx)

/ /R\{O} Ys(z) 4+ (1 + ¢s(z)){log(1 + tms(z)) — ¢m78(;g)}} np(da:)ds}
_hgln{/o quWSQ / *|C]s| ds+/ /R\{O} log(1 + ¥ s()) ~1?(ds,dx)
T
-I-/O /R\{O} [(1 + Yg(x)) log(1 + ¥ s(x)) — wms(x)] np(d:z)ds}, (A.24)

where we used in the second equality that, for fixed w, by the definition of v,,, we have that
(141h5) {10g(1 4V o) —m.s } € LY (ny(dz) x ds). Thus, 10g(1+4m o) —m.s € L' (nS (s, dx) x ds).
In particular, [ [\ gy (108(1 + Gm,s(2)) = Gm,s(2)) N (ds, dz) is well-defined.

Now Lemma A.26 below yields that each of the processes

¢ t
M : = /quWSQ, My, ::// log(1 4 ¥m,s(2)) NP (ds, dz),
R\{0}
M = / / log(1 + vs(x )) Q(ds, dz), (A.25)
R\{0}

is a martingale, and M converges in L'(Q) to M". By switching to a subsequence, we may
assume that the convergence holds a.s. Finally, by the monotone convergence theorem, the last
term in (A.24) converges to fép fR\{O} U(¢s(z))ny(de)ds Q a.s. Thus, (A.24) yields that

dQ T T 1 T -
log ( > = / qsdWE +/ ~|gs|?ds -i-/ / log(1 + vs(z)) N, (ds, dx)
dP 0 0o 2 0 JR\{0}

T
- /0 /R o) [(1 + 1hs(w)) log (1 + s () — Ys(x) | ny(dr)ds. (A.26)

Taking the expectation in (A.26) with respect to @, and using that by Lemma A.26 M’ and
M" are martingales, (A.23) follows. O

Lemma A.26 Let () < P be such that the RHS in (A.23) is finite. Then the stochastic
processes M' and M" defined in (A.25) are martingales. Furthermore, My, 1 converges in
LY Q) to ML
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Proof. First of all note that, as the RHS in (A.23) is finite, we have Eg [fOT |qs\2d8] < o0.
Therefore, M’ is a martingale. Let us prove that M” is also a martingale. We write
1
U(z)=1+z)log(l+z)—2x > 6(1+x)log2(1+w) >0 for —1<z<e?—1.

(This may be seen by noticing that at zero both sides are equal to zero and their derivatives
are equal to zero, too. Furthermore, the second derivative of the LHS is larger than the
second derivative of the RHS for —1 < z < e¢? — 1.) As the RHS in (A.23) is finite so that
U (s(x)) € LY(dQ x ny(dx) x dz), we obtain

(1+9s(x)) log2(1 + T/JS(I))I{%(I)SELH(JJ) € Ll(dQ X np(dx) x ds).
This implies that
log(1 + () 1y, (2)<e2—13(T) € L*(dQ x ng(s, dx) x ds).

Furthermore, the positive (negative) parts of log(1 + ¥, s(2))I1y,, (z)<e2—1}(¥) increase (de-
crease) to those of log(1 + vs(2))I{y, (2)<e2—1}(2) as m tends to infinity. By the monotone
convergence theorem, this yields that

log(1+¢m75(x))Iwmys(x)gez,l}(m) me log(1+¢s(x))I{wS(m)gez,l}(x) in L2(dQXn§(s, dx)xds).
Therefore,

t
Mg = [ [ 1og(1 4 e, 1) (@) N s, o)
R\{0}

t ~
M;: = / / log(l + Q,Z)S(CU))I{wS(x)S@,l}(ﬂf)NQ(dS, d:ﬂ)
R\{0}

are martingales in L?(Q), and M, r converges to My in L?*(Q). Next, note that
(1+x)log(l+z) <2((1+x)log(l42z) —x) forz>e?—1.

(This may be seen by noticing that the inequality holds for # = e? — 1, and that the derivative
of the RHS is larger than the derivative of the LHS for x > e¢? — 1.) As the RHS in (A.23) is
finite, it follows that (14 1s(2))log(141s(2)) Iy, (z)>e2—13 () € LN(dQ x ny(dx) x ds), so that

log(1 + ¥s(2)) 1, (2)>e2—1} (T) € LY(dQ x ng Q(s,dx) x ds).

Moreover, log(1 + ¥m s(7)) Iy,  (@)>e2—1}(7) increases to log(1 + ¥s(2)) [y, (z)>e2—1}(T) as m
tends to infinity. By the monotone convergence theorem, it follows that

log(1+¢m,s(x))l{¢m,s(x)>e2fl}( ) m—>00 log(1+¢3( ))I{ws(m)>6271}(x) in Ll(deng(S, dx)XdS)'

Consequently, by the definition of a compensator, the processes

t
Moy = / / log(1 + () Iy, . (a)5e2—1y () N(ds, dar)
0 JR\{0}

t -
My = / / log(1 + Q,Z)s(x))l{ws(x)xz,l}(:U)NQ(ds,dx)
R\{0}

are both martingales, see, for instance, Jacod and Shiryaev [49], Ch. II, Th. 1.8(i). Further-
more, ]\4m T converges in LI(Q) to Mp. As M” = M+ M and M" = M + M,, the proposition
now follows. O
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Lemma A.27 Let Z be a BMO(P) process and let Z be a BMO(P) function. Suppose that
g satisfies (c)-(e) and that we have a measure Q < P with corresponding q and ¢ such that
(qt, 1) € Og(t, Zt, Zy), dQ x dt a.s. Then Q ~ P.

Proof Let D; = E [%m] and 7 = inf{t € [0,T)|D; = 0} AT. As (g1, 40:) € dg(t, Zs, Z)
dQ x dt a.s., and since Z is bounded, by properties (d)-(e), there exist constants Ki,Ky >0,
a BMP(P) process H, and a BMO(P) function H, such that for Lebesgue-a.s. all t < 7,

) < Hi+ K1|Zi|  and  |ohy| < Hy + Ka|Zi). (A.27)

Since, by assumption, Z is a BMO(P) process, and Z and H are BMO(P) functions, (A.27)
entails that (ga-) is @ BMO(P) process and (i:a-) is @ BMO(P) function. Furthermore,
property (e) implies that s, > —1 + € for an € > 0. But then M; := (¢- W)iar + (¢ - Np)t/\’r
is a BMO(P) martingale with AM; > —1 + €. Since % = &(Mr), Theorem A.4 implies that
% > 0 and therefore also 7 =T, P-a.s. O
The next lemma can be proved in the same way using (A.27) and Theorem A.4 with 7 replaced
by T.

Lemma A.28 Let Z and Z be a BMO(P) process and a BMO(P) function, respectively. Sup-
pose that g satisfies (c)-(e) and we have predictable ¢ and ¢ satisfying (q1,v+) € 0g(t, Zt, Zt)
dP x dt a.s. Then we have that the measure Q induced by d% =E((q-W)r+ (- Np)r) is
well-defined and equivalent to P.

The following theorem generalizes Kobylanski’s [55] existence and uniqueness result for quadratic
drivers in a Brownian setting to an infinite activity jump setting.

Theorem A.29 Suppose that g satisfies properties (a)-(e) above and let r be the dual conjugate
of g. Define Uy(F) by (A.11). Then Uy(F) is the unique solution to the BSDE (4.3).

Proof. From the decomposition (A.12) and Lemma A.22 it follows that, for every @ < P, there
exist a BMO(P) process Z and a BMO(P) function Z such that

dU(F) 4+ 7(t, qi, ¢ )dt = dA; — ZydWy — / Zi(x)Np(dt, dzx) + 7(t, qi, ¥r)dt
R\{0}
=dA; + [ — Q2 — / Zt(x)wt(w)np(dw)
R\{0}
+r(t,qt,wt)] dt — Z dW S —/ Zy(x)N2(dt,dz),  (A.28)
R\{0}

for Lebesgue-a.s. all ¢t € [0, 7]. By Lemma A.21(1 —i—fo S, qs, ¥s)ds is a Q-submartingale
on [0,7]. (Recall that 7 =T @ a.s.) Thus, for every Q,

dA; >

qi Zy —|—/ Zt(x)wt(x)np(dx) —r(tyq, )| dt, Q-a.s. (A.29)
R\{0}

By a measurable selection theorem we may choose predictable (q;, 1) € dg(t, Z;, Z;). By
Lemma A.28, the corresponding measure () is well-defined and ¢) ~ P. Plugging ¢ and ¢ into
(A.29), we get dA; > g(t, Zy, Zy)dt, Q-a.s. As @ ~ P this implies that

dA, > g(t, Z;, Z,)dt, P-a.s. (A.30)
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Next, note that since g satisfies property (b), Lemma A.18 and Proposition A.25 yield that,
for any k > 0, there exists a &’ > 0 such that

Cy = {Q < P|Eg [/OTr(s,qS,¢s)ds] } {Q < P|E [dQ og (Zg)} < k’}.

By the Dunford-Pettis theorem, this implies that C} is weakly compact. Thus, for k large
enough, the infimum in (A.11) is attained in a @ € Cy for t = 0. Again, let D; = E [%U—}}
and 7 = inf{t > 0|D; = 0} A T. From (A.28) and the fact that, by Lemma A.21(2), U(F) +
fg (s, gs, ¥s)ds is a Q-martingale on [0,7] (as 7 = T Q-a.s.), it follows that

dA; =

qt 2y +/ Zy(x)e(x)ny(dz) — r(t, g, Py | dt, Q-as. (A.31)
R\{0}

By the definition of g, this implies dA; < g(t, Z;, Z;)dt, Q-a.s. Together with (A.30) we obtain
that .
dAt = g(t, Zt, Zt)dt, (A32)

Q-a.s. By Proposition A.1, (A.31)-(A.32) entail that (g, v:) € g(t, Zs, Z;), dQ x dt a.s.
(Notice that we need here the weak™ lower semi-continuity of r so that duality holds for r and
g.) By Lemma A.27, it follows that @ is an equivalent probability measure. Hence, the last
equality holds P-a.s. Consequently, by (A.12), (A.14) and (A.32), U(F) is indeed a solution
to the BSDE (4.3). That U;(F) is the unique solution follows from Lemma A.30 below. This
completes the proof. O

Denote C, = {Q ~ P|Eq UOT r(s,qs,qbs)ds} < oo} :

Lemma A.30 Let (Y', Z',Z') be a solution to a BSDE with driver function g satisfying proper-
ties (b)-(c) above such that g(s, Z., Z') is uniformly bounded from below. (This is in particular
the case if g is non-negative.) Then we have:

(a) Y/ = U(F), where U(F) is given by (A.11) with r being the dual conjugate of g.

(b) Uy(F) = mingec, Eg {F + ftTr(s, qs, ws)d5|ft} , where the minimum is attained in Q* €
C. with (q*, %) € dg(s, Z', Z') dP x ds a.s.

Proof. Define C =43 Q < P|E Ty 8,qs,Ys)ds| < ooy . Let Q € C. We write
Q |Jo

T
Y/ = Eqg [F—/ g(s,Zg,Zg)ds—i—/ ZLdW +/ / Z!(x)Ny(ds d$)|ft}
¢ ¢ R\{0}
T ~
= Eg [F+/ [qu;+/ ZL(x)s(x)ny(dz) — g(s, Z. Z’}
t R\{0}

T T
+ / ZdWE + / / Z;(az)NpQ(ds,dxH}}]
t t  JR\{0}

T ~ ~
= Bolr+ [ [azi+ [ Ziwamtan) — ots. 24 2] ds | 7]
t R\{0}

IN

T
EQ |:F +/ T(S,(Is,%bs)ds | ft:|) (A33)
t
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where we used in the first equality that Y, is Fi-measurable. Note that the conditional expec-
tation in the first equality is well-defined since Y’ is bounded by the definition of a solution
to a BSDE. The second and third equalities hold as fot ZdW& and fot fR\{O} Z(x)N2 (ds, dx)
are well-defined martingales. This may be seen since, by Lemma A.22 and Remark A.23
(with J = Y’ and dA; = g(t, Zs, Z;)dt), we have that Z’ and Z’ are in L?*(dQ x ds) and
L?(dQ x ng”)(s, dx) x ds), respectively.

It follows from (A.33) and the fact that we can restrict the essential infimum in (A.11) to
Q € C, that

Y/ < Uy(F).

Next, note that from Lemma A.22 and Remark A.23 it also follows that Z’ is a BMO(P)
process and Z' is BMO(P) function. Next we choose predictable (g, ¢k) € Gg(s,Z;,Zé). q*
and 1* induce a stochastic exponential martingale M; := ((¢* - W), + (¢* - N);). By Lemma
A.28, dcg := My is an equivalent probability measure. Proceeding as in (A.33) with ¢*,¢*
and Q* (where the inequality in (A.33) becomes an equality) yields

T
Yt, :EQ* |:F—/ T(Saq:ﬂb:)d‘s | ]:t :
t

Thus, by the definition of U(F) in (A.11), we get Y/ > U(F). Therefore, indeed Y/ = U(F).
As the essential infimum in (A.11) is always attained in a Q* equivalent to P, part (b) also
follows. a

Remark A.31 Theorem A.29 assumes that g satisfies (a)-(e). However, assumption (b) may
be replaced by assumption (b’). This is seen as follows: As for a bounded terminal condition
F, the corresponding Z is bounded, it is sufficient that property (b) holds for Z bounded by
an arbitrary fixed constant. (Of course, (a) and (c)-(e) must still hold.) The reason is that
one may modify g¢(t, z, Z) for Z with L°°(n,) norm greater than the specific bound, solve the
BSDE with gmodified; and then observe that gmoqified (£, Z¢, Zt) agrees with the original driver
g(t, Z;, Z;). In particular, it is sufficient that g satisfies property (b) for all Z bounded by a
fixed constant. By Lemma A.11, this is equivalent to condition (b’).

Proof of Theorem 4.1. Theorem 4.1 follows from Lemma A.16 and Theorem A.29. O
We now prepare the proof of Theorem 4.3.

Theorem A.32 Suppose that g satisfies (a)-(e) or (a),(b’),(c)-(e). Let As and Bs be pre-
dictable and bounded processes, and let C be a predictable and bounded functional in L>> (see
Section 2 for the definition). Then every BSDE with bounded terminal condition F' and driver
function

Gt 2,2) == By + g(t,z — A, 2 — C) (A.34)

has a unique solution (Y, Z,Z). Moreover, Z is a BMO(P) process, Z is BMO(P) function,
and we have

T
Y; = CI)Iélélé Eg [F + /t [— Bs + Asqs +1(8,qs,0s) + /R ws(x)és(a:)np(dar)] ds’}"t] .

(A.35)

\{0}
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Proof. As property (b) implies property (b’), it is enough to prove the theorem in the case
that (a),(b’),(c)-(e) hold. Define §(t, z, 2) := g(t, 2z — Ay, 2 — Cy) — g(t, — Ay, —C}). Now clearly,
g satisfies property (c). That properties (b’),(d) and (e) hold is also not difficult to see.
Unfortunately, § does not satisfy (a). Therefore, we have to define a new function, say g*" .
For this purpose, choose predictable (¢*, %) € dg(s, —As, —Cs). By property (d), ¢* is
bounded and by property (e) and the fact that C' is bounded and in L>>, we have that (i)
Y* € L%, (ii) ¢* is bounded by a constant, say C, and (iii) ¥* > —1 + ¢. In particular, ¥* is
a BMO(P) function. Define a new reference measure P* by setting % = 5<(q* W) + (9" -

Np)T>. Next, define the driver function

b W) g
g (th:z) = TRG _/]R\{O} 1 +¢*(x)z(x)np (d.ﬁlf) —l—g(t,z,z).

By the definition of ¢* and 1* we have that ¢”" has its minimum at (z, Z) = 0. Furthermore,
these minima are both equal to zero. Hence, g*” satisfies property (a). That g7 also satisfies
(b”),(c)-(e) with respect to nI];* follows from the inequality ab < ”’—22 + %, and the fact that ¢*
and ¥* are bounded.

Therefore, by Theorem A.29 and Remark A.31, we may define (f/, Z, Z) as the unique
solution to the BSDE

Z(x)NF" (ds, dx)

df/s = QP*(SaZ&ZS)dS - stWsP* _/ p

R\{0}
Yr = F, (A.36)

with F:= F — fOT [Bs + g(s, —As, —C,)ds. (Note that F is bounded.) In particular,

y * ~ fad w:(%) ~ P*
dy, = — Zsq, + §(8,Zs, Zs —/ 7*stn s,dx)|ds
[ ( ) r\{0} 1 +¥i(2) (@ (5, d)
—Z dWE" —/ Zs(x)]\?f* (ds,dx)
R\{0}
= §(s,Zy, Zs)ds — ZsdW, — Zs(x)Ny(ds, dz).
R\{0}

As ¢ is uniformly bounded from below, Lemma A.22 and Remark A.23 yield that Z is a
BMO(P) process and Z is BMO(P) function. Therefore, under the measure P we have that
Y is a solution to the BSDE with terminal condition F' and driver function §(¢,z, %). The
transformation

t ~
Y, =Y+ / [BS + g(s, —As, —C’t)] ds (A.37)
0

by the definition of g (see (A.34)) and g yields the BSDE

dY, = §(s,Zs,Zs)ds — ZdWs — Z(x)N,(ds, dz),
R\{0}

Yp = F (A.38)
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Hence, the BSDEs (A.36) and (A.38) are equivalent. Now since (A.36) has a unique solution,
(A.38) has a unique solution as well.
Finally, to see (A.35), note that the dual conjugates of g is given by

7§(S7 Q7¢) = Asq + T(Sa q, w) + 9(87 _A87 _OS) + 1/] : és'

As ¢ is uniformly bounded from below, by Lemma A.30 (with terminal condition F ), we have

T T
Y; = min Eg [F — / [Bs + g(s,—As, —Cs)]ds —i—/ 7(s, qs,ws)ds‘}}].
Qece 0 t

Together with (A.37), this yields (A.35). O
We also call (A.35) the dual representation of the solution to the corresponding BSDE.

Corollary A.33 Suppose that f(t,z,Z) is a driver function satisfying (b)-(e) or (b’),(c)-(e).
Furthermore, suppose that f is bounded from below and that the argmin of f with respect to
z € R? and 2 € L?(ny) N L®(ny), say A and C (both depending on t and w), are bounded.
Suppose additionally that C € L**. Then for every bounded terminal condition there exists a
unique solution, (Y, Z, Z) with Z being BMO(P) process and Z being a BMO(P) function, for
which the dual representation holds.

Proposition A.34 Suppose we have bounded terminal conditions F' and G, and driver func-
tions f(t,z,é) and §(t, z, Z) being of the form (A.34), respectively. Then the solutions of the
corresponding BSDEs, say Y and Y2, satisfy a comparison principle, i.e., if F < G and f > §
then Y1 <Ys.

Proof. Existence and uniqueness of Y] and Y3 follow from Theorem A.32. The comparison
principle follows directly from the dual representations. a

Lemma A.35 We have that for every admissible w, Us(F + Xq(f)) = Uf(ﬂ)(F) + Xt(ﬂ), where

U9 (F) is the unique solution to the BSDE with terminal condition F and driver function
g"™(t, 2, 2) with
9™ (t, 2, 2) = g(t, 2 — mo, 2 — mBy) — mibe.

Proof. By Theorem A.32 (with A = no, B = —7b, and C = (), the BSDE

df/t(ﬂ) = g"(s, 2, Z)ds — Z{MdW, — Z(™ (z)N,(ds, dz),
R\{0}
All(jr) _ F,

has a unique solution, which we denote by Ug(ﬁ)(F) with BMO(P) process Z and BMO(P)
function Z. Let (™ be the dual conjugate of ¢(™ defined above. It is straightforward to verify
that 7(™) (s, q,9) = msbs + meo5q + fR\{o} Y(z)msfs(x)np(de) + (s, q, ). (A.35) becomes then

T
Us™ (F) = min Eq {F+ / r(”)(s,qs,ws)ds‘ft] : (A.39)
t

QeCe
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As a result,

QeCe

T T
U(F + Xj(jr)) — Xt(ﬂ) = min Eq [F -l—/t 150, dWE —l—/ /R\{O} Wsﬂs(x)Nz?(ds,dx)
T
+ / |:7sts + Ts0sqs + / ws(x)'ﬂsﬁs(x)np(dx) + 7“(37 gs; 77/13):| ds‘]:t:|
t R\{0}

T
= min Eg [F—i—/ r(”)(s,q5,¢5)ds‘Ft] = Ug(ﬁ)(F), (A.40)

QEe

where the first equality holds by (A.11) and the definition of X(™. The second equality holds
because fot 7T50'5dW5Q is a @-martingale as Q ~ P and w and ¢ are uniformly bounded. To

see that also ((7f3) - N]? )+ is a Q-martingale notice that by our assumptions 7sfs is uniformly
bounded by a constant, say C. Thus,

o |  (rafa()) P, to)is| =Eq | Tt () a) P s
< K"+ g / ) 0) P )

< K" +Eq / [((7sBs(2))?) + U (s (@ ))]np(dﬂf)dS}

LJ0

r pT
< K"+ Bq | [ 1B(CImA ) + W0 ey (d)is]

< K" 4+ Eq [ /0 ' q:ws(g;))np(dx)ds] < 0,

where we used that the components of 3 are in L?* in the first, and Corollary A.12 in the
fourth inequality. The last term is smaller than infinity as Q € C.. It follows that ((7f) - NZQ )t
is a @)-martingale. Now from (A.40) the lemma follows. O

Proof of Theorem 4.3. By Lemma A.35,
U(F + X\ = 09" (7) + x ™, (A.41)

where U,f(W)(F ) is the unique solution to the BSDE with terminal condition F' and driver
function g(”). Consequently,

Vo(F) = sup Up(F + X{™) = Sup{Ug Y(F) + X5} = sup UL (F) + wo. (A.42)
TeA TEA meA

By Corollary A.33 there exists a unique solution (Y, Z, Z ), satisfying a dual representation, to
the BSDE with driver function f (defined in (4.5)) and terminal condition F. As II is compact,
we can now choose a predictable process 7* such that

f(S,ZS,ZS) = —mibs + g(s, Zs — 7 O'S, s — mafs) = g( )( ZS,ZS). (A.43)
If we could show that .
supU§ "(F) =Yy, (A.44)
TeA
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then the theorem would follow from (A.42). Now ‘>’ in (A.44) is seen since Yy = Ug(fr )(F) by
(A.43) and the definition of Y. On the other hand, ‘<’ follows from Proposition A.34. Thus, we
may infer that Yy + wq is the optimal value. Since Yy + wg = Ué’(Tr )(F) +wo = Up(F + Xj(fr*)),

7* is the optimal strategy. |
Proof of Theorem 4.5. Define
(m)
x —F-X
UtQ(F + X:(p )) = —~log <EQ [exp {W’T} ‘]'—t] > . (A.45)

Note that UtQ may be seen as a mapping from M&)(P, Fr) to M&’(P, Fi) where M&)(P, Fi) is
the Orlicz space with the Young function ® under the measure P and the filtration F; for
t € [0,T7]. As all exponential moments of Xgr)

Cheridito and Li [16], that

exist it is well-known, see for instance Sec. 5.4,

UR(F + X\V) = essinfp_p {EP [F + X |}}} + yHt(P|Q)}
Furthermore, we may infer from Corollary 5.3 in Laeven and Stadje [56] that
U(F + Xgr)) = essinfgeny UtQ( F) =essinfpp {EP [F + X |-7:t} + ct(P)}

with ¢;(P) = yessinfgen Hi(P|Q) being the weak* lower semi-continuous dual conjugate of
U;. For a Q € M with corresponding (¢2,1?) denote

dP
aQ

It is not hard to see that § = g9 + ¢% and 1+ = (1 +¢?)(1 ++?). Hence, from Proposition
A.25 we obtain

= (@ W+ (- KQ)r), and U~ (- e+ (8- K)o

— T — — —
c(P) = essinfen Bp [ | g+ | [+ E2 @D g1 +92() _¢g<m>]ng<dx>ds]ft]

E/ inf { s — 2
P[t (4:)€C, 4~

v \{0}[ (e o ()Y — (0 (0) — )] ) | 7

—Ep [/t 7 (5, G, Ds ds‘}'t]

In the second equality note that ‘>’ of course always holds while ‘<’ holds, since, by our
compactness assumptions, the inf on the RHS can be attained in a predictable (gs,%s) such
that (q,v) € C. Notice that our assumptions on C' also imply that r, defined in the last
equation, is weak* lower semi-continuous in (g,v) and satisfies (H1)-(H3).

The theorem would follow now directly from Theorem 4.3 if we could show that the dual
of r with respect to (q,v), say r*, is given by

Eis

5,29 =0+ gs.29) + V/R\{o} <eXp {’5(;)} - 2{;”) n(dz),

o1




with g defined in (4.8). To see this define

o) = glaa 4 log (1) = (5a) = w(o)| o),

for (q,9) € C. Note that by construction (s, q,v) = inf(, pec, r4% (s, q,1). We write

1+ 0()

~—

T*(S,Z,,g) = sup {ZCI—F,%TE—T’(S,Q,'(Z)}
(@D)eRIX LY
= s swp {rq+Ed 115,00 )
(a:9)€Cs (Gah)eREx LY

2 ~ ~
TR (117 £ S } SR
(@ )ecs L 27 Y 0

where the third equality can be seen through a simple direct computation. This finishes the
proof of the theorem. ]

Proof of Theorem 4.8. As the components of 3 are in L>* and as, by assumption, pj is
bounded away from —1, clearly log(1 + pB) € L** as well. Let

9 (s,2,2) = g(s,2 — yps0s, 7 — v1og(1 + psBs)) — Ypsbs + %Ipsffsl2

- / Alog(1 + paBa(z)) — paBe(e)]npl(de).
R\{0}

By Theorem A.32, there exists a unique solution, say Yt(p ), to the BSDE with terminal condition
0 and driver function ¢(”. It follows from (A.35) that

T
Y;(P) = (3&1& Eq |:/t r(P)(s7q5,ws)ds‘ft] , (A.46)
with 7(?) being the dual conjugate of g(*), given by
1 r(s 4,9
T(p)(& q, ¢) L= '7<psbs - §|,030's|2 + ps0sq + ("}/)

b [ [loB(14 p8u() = puBile) +log(L+ pufi(a)(a) my ().
=\ (0)

Using (4.12), we get (with U; defined in (2.3))

Uy(ylog(XY)) — 7 log(X*)

T T T
= min EQ |:7/ psUdesQ + ’7/ / 10g(1 + ps/Bs(:L‘))NI?(dS? dx) +/ |:’7psbs - z|pso's|2
QeC., ¢ t Jr\{0} t 2

+ YpsTsqs + T(S,qsﬂ/}s) + /
R\{

+710g(1-+ puB)) ) g0 ] 7]

0 {7log(1 + psBs(x)) — ypsBs(x)

T
&QEQ M T (s,qs,ws)ds)ft} Y,
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The last equality holds by (A.46). Hence, Yt(p) = Us(y 10g(X§p))) - 'ylog(Xt(p)). This yields

Vo = sup Up(ylog(X)) = sup{Y” + y1og(X{”)} = sup Y ¥ + 7 log(wp). (A.47)
peA peA peA

Now by Corollary A.33 there exists a unique solution, (Y, Z, Z), to the BSDE (4.15). Next we
choose a predictable p* € C such that

> * ~ * * Yok
f(S, ZSa ZS) = g(s, Zs — VPsOs, Zs - VIOg(l =+ psﬁs)) - ’ypsbs + §|p805‘2

+ / [ —ylog(1 + pgfBs(x)) + 'szﬁs(x)]”p(dx) = g(p*)(3> Zs, 25)7
R\{0}

where f was defined in (4.14). By the definition of Y in (4.15) this yields that Y = Y (¥"), If
we could show that

sup Yo(p) =Yp, (A.48)
peEA

then from (A.47) the theorem would follow. Now ‘>’ in (A.48) follows as Yy = Yo(p*). On the
other hand ‘<’ follows from Proposition A.34. Thus, we may conclude that Vy = Yoy log(wyp).

Since Yy + v log(wo) = Up(y log(XC([,p*))), p* is the optimal strategy. O

Proof of Theorem 4.11. As the components of 3 are in L?>* and as, by assumption, pj3
is bounded away from —1, a Taylor expansion of (1 + ps/3)” and of e yields that for every
z € L*(np) N L*®(n,) we have

(14 puB,)e" = 2= pyfy — 1) € L2(m,) N L=(ny).

The main idea for the remainder of this proof is now to employ our existence results on BS-
DEs derived above and, on this basis, apply an approach similar in spirit to that of Hu,
Imkeller and Miiller [47], Miiller [69] and Morlais [68]. Specifically, we will construct a family
(Rp’(q’¢))p€A7Q(q,¢)€Q with a trading strategy p* and a probability measure Q* (with corre-
sponding (¢*,%™*)) such that

: X7 X7 N

() By = S = SEe((a- W) + (- Ny)r ).

11 pv(Qyw) — — uj _
(i) R, Ry = = exp{—Yp} does not depend on (g,%) € C and p € A.
(iii) RY (%) g P-supermartingale for all p € A.
(iv) Rtp*’(q’d)) is a P-submartingale for all (¢,%) € C.

(v) Rf*,(q*,@b*) is a P-martingale.

We then get that

* * 'Y * * >k *
E [R?(q & q < Ry = % exp{-Yy} = E [Rg ("¢ >] <E [R; ’(qﬂ“} , for all p € A, (q,9) € C.
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Since this implies that Ry is the optimal solution and p* is the optimal strategy, we would have
proved Theorem 4.11. To construct such a family (R} ’(q’d})) define

wY t q52+ 80.82
Ry = Oexp{((waJrQ)-W) ((vpB+1) - N, )t+/ (7psbs——| | ;‘p | )ds

5
-V + /O /}R\{O} [v1og(1 4 psBs(x)) — YpsBs +1og(1 + ths(2)) — ¥s(x)] Ny (ds, dm)},

where Y is the solution of the BSDE (4.18). Existence and uniqueness follow from Corollary
A.33. Using Itd’s generalized formula, for any strategy p and any (g,%) € C' we have

Rtp:(%w) _ ng(fmb)

t t
= / RV (ypsos + g5 + Zs) AW, + / ROV [1s(2) + Zs(x) + vpsBa(x)] Ny (ds, dx)
0 0 R\{0}

+ /R\{O} {’ylog(l + psPBs(x)) — vpsBs(x) +log(l + vs(x)) — Ys(x )} »(ds, dx)
t
+/0 Rgfqvw){%’)sbs - %('Y’/)SUS‘Z + ‘QS|2) — f(s,Zs, ZS) + %’W/Psgs +qs + Zs|2}d5
t
v [ e | [(1 T (@) (1 + puBy(2)) exp(Zs(2)) — 1 — Zu(a)
0 R\{0}
— ylog(1 + psfs(x)) — log(1 + 1s(x)) | Np(d, ds)

/ Rp e ¢ ’Ypso's +qs + ZS)dWs

+ / Roa) / [(1+ (@) (1 + paBa(2))7 exp(Za(x)) — 1] Ny(ds, d)
R\{0}

/ ol {’VP bs _f(SaZ&ZS) "‘V(VQ_:[)PSUSP'F |ZQS|2 0sZs + (’7P503+Z3)qs}d5
[ [ ) ) el Z(e) ~ Zu)
R\{0}
— 1psBu() = () = 1] mp(da)ds.

Therefore, R”(@%) satisfies: dRP(4%) = R’i’(q’¢)de’(q’¢) + R’f(q’w)dAp’(q’¢), with A7 (¢%) such
that

dAé”(q’w) = (’Ypsbs - f(87 Zs, ZS) +Yps0sZs + ('ypsas + Zs)Qs + s - ((1 + psﬁs)7 eXP(Zs) - 1)

(v —1) o.|2 12,2 z))Y exp(Zs(z)) — Zy(z) — r) — Linplar) |as
e e B [ [0 p ) ex0(Zu) ~ 2u) = () = gl ) s

and with Mtp’(q’w) denoting the local martingale ((ypo+q+2)-W )+ ( [(1+9)(1+pB) exp(Z)—
1] : Np)t. It follows that R”(®%) has the multiplicative form.

Rf,(qﬂb) _ E(Mf,(qm) exp(Af’(q’d})).
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By Corollary A.33, Z is a BMO(P) process, and Zis a BMO(P) function. In particular, by
our assumptions on 1 and S, [(1 +)(1+pB)7 exp(Z) — 1] is also a BMO(P) function bounded
uniformly away from minus one. Furthermore, by our assumptions p, ¢ and ¢ are uniformly
bounded. Therefore, the Doléans-Dade exponential, & (M, ’(q’w), is a positive martingale. Next,
choose a predictable saddle point p* € A and (¢*,¢*) € C such that

- —1
f(37257 Zs) = 7p:bs + ')/(’YQ)IP:O_SP =+ T + ’YPZO'SZS + ("szas + Zs)qz

+ 05 - (14 piBs)Te? — 1) + /R o [(1 + p2Bs(@)) %@ — Zy(x) — plBs(z) — 1] ny(dz),

|Zs[”

where Z, Z belong to the solution of the BSDE (4.18). Now it is not hard to see that for
any v < 0 and s € [0,7], (Xgp))VE [%]}"g} is in L'. Thus, since by definition for every s

we have that B2 = @E [dg;w ].7-"3} exp{—Y;} with Y being bounded, we get that also

Rﬁ’(q“") € L' for every s. Therefore, by the definition of f in (4.17):

(a) The supermartingale condition in (iii) holds true, as for all p, the positive process
AP A7) .= exp(AP(4°¥7)) is non-decreasing. (Note that Ry < 0.)

(b) The submartingale condition in (iv) holds true, as for all (g,), the process AP (@¥) ig
non-increasing.

(¢) The martingale condition in (v) holds true, as A°"(a"¥") =1,

(g¥)

Hence, our family Rf’ satisfies properties (i)-(v). The theorem is proved. O
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